Rise of Nations Script Function Listing

Introduction

This document is organized in the same way that the script editor is for functions.  However, if you want an alphabetized listing of all functions listed here, click on the Insert menu and select Bookmark.  Functions can be jumped to from there.  

There are two ways that functions are listed in here.  One way is by definition, syntax, parameters, returns, example and sometimes-similar functions.  The other is a link to another function that is similar to the function in question.  The only difference between the function listed and the one it links to be what they return.  There is no difference in syntax or parameters, so for reference just use the syntax and parameters of the function that is has a link to it.

One other important thing is the charts that are listed in the sidebars.  If there is an arrow anywhere in a listing, then it is pointing at a listing on the side of the page of parameters for that variable, or what could be returned.  Also be sure to use the provided unit and research tables, which can come in handy when dealing with unit types or technology names.


Hopefully this document will find good use as a reference piece if there are questions about what a function does, or what its parameters are.  It is not intended to have too much detail.  For more detail on how to use these functions, be sure to check out actual game scripts, which are located in these directories (where game is the directory where Rise of Nations is installed): AI scripts – game/AI/scripts; Conquer the World scripts – game/conquest/scripts; Tutorials/Skill Tests – game/scenario.

(Note: a more compact but complete listing of all script functions is available in game through the Script Editor, by selecting Insert Trigger Function… from the Edit menu)
Index of Function Categories (click on names to go to them) - Appendix (contains further info on scripts)

· AI Building Placement  
· Audio
· Building Info
· Camera
· Chat
· Cities
· Comparison Checks
· Conquer the World-only functions
· Create Objects
· Destroy/Kill Objects
· Diplomacy
· Flags
· Game Settings Info
· General AI Toggles
· Groups
· Health
· Keyboard Events
· Map Info
· Map Visibility
· Market
· Messages
· Messages, Help
· Messages, Popup Dialogs
· Messages, Resource Warning
· Mouse Over Objects
· Mouse, Events
· Nation & Player Stats
· Object Location
· Objectives (Scenario)
· Objectives (Temporary)
· Ping
· Population
· Screenshot
· Search Functions
· Selection
· Team Change
· Techs & Ages
· Time
· Timers
· Types & Controls
· UI, Highlight
· UI Stats
· Unit Info
· Unit Orders
· Unit Training
· Victory/Defeat
· Triggers
· Utilities, Math
· Appendix
AI Building Placement

· place_building 

Definition:
Gives the AI an order to place a building type at a specified city.  Useful for AI scripts and any scripted AI in a scenario.

Syntax: 

int place_building(int who, string build_type, string city_name);

Parameters:

1. ( who - a nation index 1-8, based on nation color 

2. build_type - a building type name

3. city_name - a city name

Returns:  

1 for city buildings that already exist in the city, 0 for non-city buildings or city buildings that do not exist, -1 if failed.

Example:  


if (num_city_buildings(7, “Paris, “Farm”) < 5) {

  place_building(7, “Farm”, “Paris”);  

}
· Explanation: If nation 7 has less than five Farms at Paris, then place_building orders the AI who controls nation 7 to build a Farm at Paris.

· num_city_buildings – finds the number of buildings of a type in a city.   More
Similar Functions: (click on to go)


place_building_upgrade, place_building_upgrade_with_cost, place_building_with_cost
· place_building_upgrade – works the same as place_building (above), except the AI places the current upgrade of the building.

· place_building_upgrade_with_cost – works the same as place_building (More), except the AI places the current upgrade of the building once there are enough resources to pay for it.

· place_building_with_cost – works the same as place_building (More), except the AI places the building once there are enough resources to pay for it.
· place_city_with_cost 

Definition:

Gives the AI an order to place a city once it has enough to pay for it.  Useful for AI scripts and any scripted AI in a scenario.. 

Syntax: 

int place_city_with_cost( int who);

Parameters: 


1. ( who - a nation index 1-8, based on nation color


Returns:  

1 if AI is able to place a city with the cost, 0 if it does not have the resources to place a city, -1 it is unable to place any more cities or if it failed.

Example:  

if (have_tech(6, “City State”) && num_cities(6) < 2) {

  place_city_with_cost(6);

}
· Explanation: If nation 6 has the technology City State, and it has less than 2 Cities, then place_city_with_cost orders the AI to place a new City once it has the resources to pay for it.

· have_tech – finds if a nation has researched a certain technology.  More
· num_cities – finds how many Cities a nation has.  More
· place_orphan_building 

Definition:

Gives the AI an order to place a building type near a specified building.  Useful for AI scripts and any scripted AI in a scenario.

Syntax: 

int place_orphan_building( int who, string build_type, int build_o);

Parameters: 


1. ( who - a nation index 1-8, based on nation color


  
2. build_type - a building type name


  
3. build_o – a building ID


Returns:  

1 for city buildings that already exist in the city, 0 for non-city buildings or city buildings that do not exist, -1 if failed.


Example:  



if (have_tech(4, “The Art of War”)) {

  string capital_name = find_capital(4);

  int wood_camp = find_build_at_city(4, capital_name, “Woodcutter’s Camp”, 1);

  place_orphan_building(4, “Tower”, wood_camp);

}
· Explanation: If nation 4 has the technology the Art of War, then find the name of its capital and use that information to find the building ID of a Woodcutter’s Camp (active or inactive) at the capital.  Once that is found, then use place_orphan_building to order the AI in control of nation 4 to place a Tower near its building with the ID of wood_camp (the previously found Woodcutter’s Camp).

· have_tech – finds if a nation has researched a certain technology.  More
· find_capital – finds the name of a nation’s capital.  More
· find_build_at_city – finds a building ID of a building of a certain building type at a specific City.  More
Similar Functions: (click on to go)


place_orphan_building_upgrade, place_orphan_building_upgrade_with_cost, place_orphan_building_with_cost
· place_orphan_building_upgrade – works the same as place_orphan_building (above), except the AI places the current upgrade of the building.

· place_orphan_building_upgrade_with_cost – works the same as place_orphan_building (More), except the AI places the current upgrade of the building once there are enough resources to pay for it.

· place_orphan_building_with_cost – works the same as place_orphan_building (More), except the AI places the building once there are enough resources to pay for it.

back to index
Audio

· play_sound
Definition:

Plays a sound on all machines.  The script looks for sound files (.wav extension) in the directory the script file is located.  Useful in scenarios to help signify events or messages.

Syntax:

int play_sound( string sound);
Parameters:

1. sound – sound filename (.wav extension).  Many sound files can be found in the game sound directory.

Returns:


1 if true or success, 0 if false, -1 if failed.

Example:

if (have_contact(1, 2) && have_contact(1, 3) && have_contact(2, 3)) {

  play_sound(“contact.wav”);

}
· Explanation: If all nations have contact with one another, then play_sound plays the soundfile “contact.wav” on all machines.

· have_contact – finds if 2 nations have contact with one another.  More
· play_sound_to
Definition:

Plays a sound to one player only.  The script looks for sound files (.wav extension) in the directory the script file is located.  Useful in scenarios to help signify events or messages.

Syntax:

int play_sound_to( int who, string sound);
Parameters:


1. ( who – a nation index 1-8, based on nation color


2. sound – sound filename (.wav extension).  Many sound files can be found in the game sound directory.

Returns:


1 if true or success, 0 if false, -1 if failed.

Example:

if (have_contact(1, 2)) {

  play_sound(1, “contact.wav”);

}
· Explanation: If nation 1 and nation 2 have contact with one another, then play_sound_to plays the soundfile “contact.wav” to nation 1.

· have_contact – finds if 2 nations have contact with one another.  More
· set_music_mood
Definition:


Changes the music playing to a certain type of mood.  Useful in scenarios to help signify how the game is going.

Syntax:

int set_music_mood( string mood, int bool_immediately);
Parameters:


1. mood – “winning”, “losing”, or “economic”

2. bool_immediately – force the music to switch immediately or wait until the current song is done.

Returns:


1 if true or success, 0 if false, -1 if failed.

Example:


if (score(1) > score(8)) {

  set_music_mood(“winning”, 1);

}
· Explanation: If nation 1’s score is higher than nation 2’s score, than set_music_mood changes the music mood to winning immediately.

· score – finds a nation’s score.  More
· set_music_volume
Definition:

Plays a sound to one player only.  Useful in scenarios to tone down the music in order to emphasize something else.

Syntax:

void set_music_volume( int percent)
Parameters:


1. percent – a percent (integer 0-100)

Returns:


nothing (0 if used in expression)

Example:

set_music_volume(50);

play_sound(“sky_falling.wav”);
· Explanation: set_music_volume sets the music volume to 50 percent.  Then the sound “sky_falling.wav” is played on all machines.

· play_sound – plays a sound on all machines.  More
· sound_finished
Definition:

Checks to see if no sound is playing.  Useful in scenarios to make sure nothing will play at the same time as a when a scripted sound is played.

Syntax:

int sound_finished();
Parameters:


none

Returns:


1 if true or success, 0 if false, -1 if failed.
Example:

if (sound_finished()) {

  play_sound_to(1, “revolt.wav”);

}
· Explanation: sound_finished finds if no sound is playing.  If so, then the sound “revolt.wav” is played on the machine in control on nation 1.

· play_sound_to – plays a sound to one player.  More
· stop_sound
Definition:

Stops whatever sound is playing.  Useful in scenarios to clear any sounds from playing in order to play a scripted sound.

Syntax:

void stop_sound();
Parameters:


none

Returns:


nothing (0 if used in an expression)
Example:

stop_sound();

play_sound(“plague.wav”);
· Explanation: stop_sound stops whatever sound is playing.  Then the sound “plague.wav” is played on all machine.

· play_sound – plays a sound on all machines.  More
back to index
Building Info

· building_active
Definition:


Triggered if a building has been fully constructed.

Syntax:

int building_active( int who, int build_o);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. build_o – a building ID

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

int barracks_id = find_inactive_build(3, “Barracks”);

if (building_active(3, barracks_id)) {

  train_unit_at_with_cost(3, 3, “Hoplites”, barracks_id);

}
· Explanation: First barracks_id is set equal to the building ID of an unbuilt Barracks of nation 3.  Then using building_active, it is checked if the building with the ID of barracks_id of nation 3’s is fully constructed.  If it is, then 3 Hoplites are trained at the building with the ID of barracks ID of nation 3’s once there are enough resources to pay for them.

· find_inactive_build – finds the building ID of an uncomplete building.  More
· train_unit_at_with_cost – trains a units at a specific building once there are enough resources to pay for them.  More
Similar Functions: (click on to go)


building_destroyed, building_full, building_started
· building_destroyed – works the same as building_active (above), except it finds if a building has been destroyed.
· building_full - works the same as building_active (More), except it finds if a building is fully garrisoned.

· building_started - works the same as building_active (More), except it finds if construction has begun on a building.
· building_type_destroyed
Definition:

Triggered when a building type has been destroyed.

Syntax:

int building_type_destroyed( int who, string build_type);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. build_type – a building type name

Returns:
The number of buildings of the specified type destroyed since the last check if true, 0 if false, -1 if failed.


Example:


if (building_type_destroyed(5, “Barracks”)) {

  string capital_name = find_capital(5);

  place_building_with_cost(5, “Barracks”, capital_name);

}
· Explanation:  building_type_destroyed finds if any of nation 5’s Barracks get destroyed.  If so, then the name of nation 5’s capital is found and capital_name is set equal to it.  Then a new Barracks is placed at nation 5’s city with the name of capital_name.

· find_capital – finds the name of a nation’s capital.  More
· place_building_with_cost – orders an AI to place a building once it has the resources to pay for it.  More
· clear_build_queue
Definition:
Clears the build queue at a building.  Also determines if the player gets their resources back or not.


Syntax:


int clear_build_queue( int who, int build_o, int bool_unpay_cost);

Parameters:
1. ( who – a nation index 1-8, based on nation color

2. build_o – a building ID

3. bool_unpay_cost – 1 for the player to get his resources back, 0 for the player to not get his resources back

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

if (num_type(3, “Citizen”) >= 50) {

  string capital_name = find_capital(3);

  int capital_id = find_city_id(capital_name);

  clear_build_queue(3, capital_id, 1);

}
· Explanation: If nation 3 has 50 or more Citizens, then the name of its capital is found and capital_name is set equal to it.  Then the building ID of nation 3’s capital is found using the name value stored in capital_name.  Finally, using clear_build_queue, the build queue of nation 3’s building with the ID of capital_id (the capital) is cleared and all the resources are returned.

· num_type – finds how many objects of a type a nation has.  More
· find_capital – finds the name of a nation’s capital.  More
· find_city_id – finds the building ID of a city.  More
· get_rally_x
Definition:

Finds the world X position of a rally point from a building.

Syntax:

int get_rally_x( int who, int build_o);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. build_o – a building ID

Returns:
The world X position of the rally point if true or success, 0 if false, -1 if failed.


Example:


get_rally_x(7, 2100);
· Explanation: get_rally_x finds the world X position rally point of nation 7’s building with the ID of 2100.

Similar Functions: (click on to go)


get_rally_y
· get_rally_y – works the same as get_rally_x (More), except it finds the game world Y position.
· is_city
Definition:

Finds if a building is a city.

Syntax:

int is_city( int who, int build_o);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. build_o – a building ID

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

is_city(4, 2093);
· Explanation: is_city finds if nation 4’s building with the ID of 2093 is a city.


Similar Functions: (click on to go)



is_civilian_building, is_military_building
· is_civilian_building – works the same as is_city (above), except it finds if a building is a civilian building.

· is_military_building - works the same as is_city (More), except it finds if a building is a military building.

· is_rally_set
Definition:

Finds if a building has a rally point set.

Syntax:

int is_rally_set( int who, int build_o);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. build_o – a building ID

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

is_rally_set(6, 2076);
· Explanation: is_rally_set finds if nation 6’s building with the ID of 2076 has a rally point set.

· max_workers_at_building
Definition:


Finds the max number of workers that can work at a building.

Syntax:

int max_workers_at_building( int who, int build_o);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. build_o – a building ID

Returns:
The number of max workers that can work at a building if true or success, 0 if false, -1 if failed.

Example:


int wood_camp = find_build(3, “Woodcutter’s Camp”);

if (num_workers_at_building(3, wood_camp) < max_workers_at_building(3, wood_camp)) {

  train_unit_with_cost(3, 1, “Citizen”);

}
· Explanation: The int variable wood_camp is set equal to the building ID of one of nation 3’s Woodcutter’s Camps.  If the number of workers at nation 3’s building with the ID of wood_camp  is less than the maximum workers allowed (max_workers_at_building finds how many workers nation 3’s building with the ID of wood_camp can accommodate), then nation 3 will train a Citizen.

· find_build – finds the building ID of a nation’s building of a certain building type.  More
· train_unit_with_cost – orders an AI to train a unit once it has the resources to pay for it.  More
· num_workers_at_building – finds the number of workers working at a building.  More
· num_garrisoned_in
Definition:

Finds how many units are garrisoned in a building or unit.

Syntax:

int num_garrisoned_in( int who, int build_o);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. build_o – a building ID

Returns:

The number of garrisoned units if true or success, 0 if false, -1 if failed.

Example:

gar_units = num_garrisoned_in(4, 2011);
· Explanation: num_garrisoned finds how many units are garrisoned in nation 4’s building with the ID of 2011 and then gar_units is set equal to that number.

· num_type_queued
Definition:


Finds how many units of a type are queued at a building.


Syntax:


int num_type_queued( int who, int build_o, string unit_type);

Parameters:
1. ( who – a nation index 1-8, based on nation color

2. build_o – a building ID

3. unit_type – a unit type name

Returns:

The number of units queued if true or success, 0 if false, -1 if failed.

Example:

num_citizens_queued = num_type_queued(8, 2000, “Citizen”);
· Explanation: num_citizens_queued finds the number of Citizens queued at nation 8’s building with the ID of 2000 and then num_citizens_queued is set equal to that number.

· num_workers_at_building
Definition:

Finds the number of workers at a building.

Syntax:

int num_workers_at_building( int who, int build_o);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. build_o – a building ID

Returns:

The number of workers at a building if true or success, 0 if false, -1 if failed.

Example:

int wood_camp = find_build(3, “Woodcutter’s Camp”);

if (num_workers_at_building(3, wood_camp) < max_workers_at_building(3, wood_camp)) {

  train_unit_with_cost(3, 1, “Citizen”);

}
· Explanation: The int variable wood_camp is set equal to the building ID of one of nation 3’s Woodcutter’s Camps.  If the number of workers (num_workers_at_building finds how many workers are at nation 3’s building with the ID of wood_camp) at nation 3’s building with the ID of wood_camp is less than the maximum workers allowed, then nation 3 will train a Citizen.

· find_build – finds the building ID of a nation’s building of a certain building type.  More
· train_unit_with_cost – orders an AI to train a unit once it has the resources to pay for it.  More
· max_workers_at_building – finds the maximum amount of workers a building can accommodate.  More
back to index
Camera

· camera_x
Definition:

Finds the current game world X position of the camera.

Syntax:

int camera_x();
Parameters:


None

Returns:

The game world X position of the camera if true or success, 0 if false, -1 if failed.

Example:

x = camera_x();
· Explanation: camera_x finds the current game world X position of the camera.  Then x is set equal to that value.

Similar Functions: (click on to go)


camera_y

get_camera_x

get_camera_y
· camera_y – works the same as camera_x (above), except it finds the game world Y position.

· center_camera_on
Definition:

Centers the camera on an object.

Syntax:

int center_camera_on( int who, int object_o);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. object_o – a unit or building ID

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

center_camera_on(3, 15);
· Explanation: center_camera_on centers the camera on nation 3’s unit with the ID of 15.

· get_camera_x - works the same as camera_x (More).

· get_camera_y- works the same as camera_x (More), except it finds the game world Y position.

· get_current_zoom
Definition:


( Finds the current zoom level.  

Syntax:

int get_current_zoom();
Parameters:

None

Returns:

Returns a 4, 5, or 6 as noted above if true or success, 0 if false, -1 if failed.

Example:

zoom  = get_current_zoom();
· Explanation: get_current_zoom returns the current zoom level.  Zoom is set equal to that value.

· is_camera_panning
Definition:



Checks to see if the camera is panning due to hotkeys.

Syntax:

int is_camera_panning();
Parameters:

None

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

is_camera_panning();
· jump_camera
Definition:

Jumps the camera to a new location.

Syntax:

int jump_camera( int x, int y);
Parameters:
1. x – game world X position

2. y – game world Y position

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

jump_camera(15, 25);
· Explanation: jump_camera jumps the camera to game world position 15, 25.

Similar Functions: (click to go)


move_camera
· move_camera – works the same as jump_camera (More), except it moves the camera over the map instead of jumping it.

· scrolling_lock – combines what scrolling_lock_manual (More), scrolling_lock_minimap (More) and scrolling_lock_shortcuts (More) do into one function.

· scrolling_lock_manual
Definition:
Disables the ability to scroll around the screen by moving the mouse to the edge.

Syntax:

void scrolling_lock_manual();
Parameters:

None

Returns:

Nothing (0 if used in an expression)

Example:

scrolling_lock_manual();
Similar Functions: (click to go)


scrolling_lock, scrolling_unlock, scrolling_unlock_manual
· scrolling_lock_minimap
Definition:

Disables the ability to scroll around the map using the mini-map.

Syntax:

void scrolling_lock_minimap();
Parameters:

None

Returns:

Nothing (0 if used in an expression)

Example:

scrolling_lock_minimap();
Similar Functions: (click to go)

scrolling_lock, scrolling_unlock, scrolling_unlock_minimap
· scrolling_lock_shortcuts
Definition:

Disables the ability to scroll to objects using hotkey shortcuts.

Syntax:

void scrolling_lock_shortcuts();
Parameters:

None

Returns:

Nothing (0 if used in an expression)

Example:

scrolling_lock_shortcuts();
Similar Functions: (click to go)


scrolling_lock, scrolling_unlock, scrolling_unlock_shortcuts
· scrolling_unlock – works the same as scrolling_lock (More), except it allows the user to scroll around the map by moving the mouse to the edge of the screen, using the mini-map, or using hotkeys.

· scrolling_unlock_manual – works the same as scrolling_lock_manual (More), except it allows the user to scroll around the map by moving the mouse to the edge of the screen.

· scrolling_unlock_minimap – works the same as scrolling_lock_minimap (More), except it allows the user to scroll around the map using the mini-map.

· scrolling_unlock_shortcuts – works the same as scrolling_lock_shortcuts (More), except it allows the user to scroll around the map using hotkeys.

· zoom_in
Definition:

Zooms the camera fully in on a certain location.

Syntax:

int zoom_in( int x, int y);
Parameters:
1. x – game world X position

2. y – game world Y position

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

zoom_in(135, 53);
· Explanation: zoom_in zooms the camera in to full zoom on game world position 135, 53.

Similar Functions: (click to go)


zoom_out
· zoom_in_on
Definition:

Zooms the camera fully in on an object.

Syntax:

int zoom_in_on( int who, int object_o);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. object_o – a unit or building ID

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

zoom_in_on(3, 2000);
· Explanation: zoom_in_on zooms the camera in to full zoom on nation 3’s building with the ID of 2000.


Similar Functions: (click to go)



zoom_out_on
· zoom_out – works the same as zoom_in (More), except it zooms the camera fully out over a certain game world location.

· zoom_out_on – works the same as zoom_in_on (More), except it zooms the camera fully out over a certain object.

· zooming_lock
Definition:

Locks the zoom level to the current zoom level.

Syntax:

void zooming_lock();
Parameters:



None

Returns:

Nothing (0 if used in an expression)

Example:

zooming_lock();
Similar Functions: (click to go)


zooming_unlock
· zooming_unlock – works the opposite of zooming_lock (More), allowing the user to zoom at different levels.

back to index
Chat

· chat
Definition:


Sends a chat message from one player to another.

Syntax:

int chat(int who_to, int who_from, string message)
Parameters:
1. ( who_to – a nation index 1-8, based on nation color

2. ( who_from – a nation index 1-8, based on nation color

3. message – text to be displayed

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

chat(1, 2, “Hi”);
· Explanation: chat makes nation 2 send a text message that says “Hi” to nation 1.

· chat_all
Definition:


Sends a chat message from one player to all other players.

Syntax:

int chat_all(int who_from, string message)
Parameters:
1. ( who_from – a nation index 1-8, based on nation color

2. message – text to be displayed

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

chat(2, “Hi”);
· Explanation: chat_all makes nation 2 send a text message that says “Hi” to all nations.

back to index
Cities

· city_alarm_sounded
Definition:

Checks if the city alarm is sounding.

Syntax:

int city_alarm_sounded(int who, string city_name);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. city_name – a city name

Returns:

1 if true or success, 0 if false, -1 if failed.


Example:


if (city_alarm_sounded(4, “Kiev”)) {

  group_move_order(1, 15, 25);

}
· Explanation: city_alarm_sounded checks to see if nation 4’s city of Kiev has its city alarm sounding.  If so, then the current group of nation 1 is given a move order to game world position 15, 25.

· group_move_order – gives the current group a move order.  More
· city_assimilate
Definition:


Instantly assimilates a city that has been captured.


Syntax:


int city_assimilate(int who, string city_name);

Parameters:
1. ( who – a nation index 1-8, based on nation color

2. city_name – a city name

Returns:


1 if true or success, 0 if false, -1 if failed.

Example:

if (city_captured_by(1, 2, “K’ai-feng”)) {

  city_assimilate(2, “K’ai-feng”);

}
· Explanation: If nation 1’s city of K’ai-feng is captured by nation 2, then city_assimilate instantly assimilates K’ai-feng for nation 2.

· city_captured_by – finds if a City is captured by a certain nation.  More
· city_assimilated_by
Definition:

Finds if a player assimilated a city.

Syntax:

int city_assimilated_by(int who_defend, who_attack, string city_name);
Parameters:


1. ( who_defend – a nation index 1-8, based on nation color

2. ( who_attack – a nation index 1-8, based on nation color

3. city_name – a city name

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

if (city_assimilated_by(1, 8, “Moscow”)) {

  int city_id = find_city_id(“Moscow”);

  group_attack_order(1, 8, city_id);

}
· Explanation: city_assimilated_by checks to see if nation 1’s former city of Moscow has been assimilated by nation 8.  If so, then the building ID of Moscow is found, and using that, a group attack order is used to send the current group of nation 8 to attack Moscow.

· find_city_id – finds the building ID of a City.  More
· group_attack_order – gives the current group an attack order on an object.  More
· city_being_assimilated
Definition:

Finds if a player is assimilating a city.

Syntax:

int city_being_assimilated(int who, string city_name);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. city_name – a city name

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

if (city_being_assimilated(8, “Moscow”)) {

  int city_id = find_city_id(“Moscow”);

  group_attack_order(1, 8, city_id);

}
· Explanation: city_being_assimilated checks to see if nation 8 is assimilating the city of Moscow.  If so, then the building ID of Moscow is found, and using that, a group attack order is used to send the current group of nation 8 to attack Moscow.

· find_city_id – finds the building ID of a City.  More
· group_attack_order – gives the current group an attack order on an object.  More
· city_captured
Definition:
Finds if a city has been captured.  Pass in a blank string (“”) to find if any city has been captured.

Syntax:

int city_captured(int who, string city_name);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. city name – a city name

Returns:

1 if true or success, 0 if false, -1 if failed.

Examples:

if (city_captured(8, “Moscow”)) {

  int city_id = find_city_id(“Moscow”);

  group_attack_order(1, 8, city_id);

}
· Explanation: city_captured checks to see if nation 8 has lost the city of Moscow.  If so, then the building ID of Moscow is found, and using that, a group attack order is used to send the current group of nation 8 to attack Moscow.

· find_city_id – finds the building ID of a City.  More
· group_attack_order – gives the current group an attack order on an object.  More
Similar Functions: (click to go)


city_id_captured
· city_captured_by
Definition:
Finds if a player has lost a city to another player.  Pass in a blank string (“”) to find if a player has lost any cities to another player.


Syntax:


int city_captured_by(int who_defend, int who_attack, string city_name);

Parameters:
1. ( who_defend – a nation index 1-8, based on nation color

2. ( who_attack – a nation index 1-8, based on nation color

3. city_name – a city name

Returns:

1 if true or success, 0 if false, -1 if failed.

Examples:

if (city_captured_by(1, 8, “Moscow”)) {

  string capital_name = find_capital(8);

  int city_id = find_city_id(capital_name);

  group_attack_order(1, 8, city_id);

}
· Explanation: city_captured_by checks to see if nation 1’s former city of Moscow has been assimilated by nation 8.  If so, then the building ID of nation 8’s capital is found, and using that, a group attack order is used to send the current group of nation 8 to attack nation 8’s capital.

· find_city_id – finds the building ID of a City.  More
· group_attack_order – gives the current group an attack order on an object.  More
· city_exists
Definition:


Finds if a city exists.

Syntax:

int city_exists(string city_name);
Parameters:
1. city_name – a city name

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

city_exists(“Beijing”);
· city_id_captured – works the same as city_captured (More), except it uses a build_o (a building ID, integer value) as its second parameter instead of city_name.

· find_city_id
Definition:

Finds the building ID of a city.

Syntax:



int find_city_id(string city_name);
Parameters:
1. city_name – a city name

Returns:

The building ID if true or success, 0 if false, -1 if failed.

Example:

paris_id = find_city_id(“Paris”);
· Explanation: find_city_id finds the building ID of Paris and sets paris_id equal to that number.

· find_city_name
Definition:

Finds a city name.  Cycles through a player’s cities on repeated calls.

Syntax:

string find_city_name(int who);
Parameters:
1. ( who – a nation index 1-8, based on nation color

Returns:

A city name if true or success, 0 if false, -1 if failed.

Example:



french_city = find_city_name(8);
· Explanation: find_city_name finds a city name of nation 8 and sets french_city equal to it.

· find_city_owner
Definition:

Finds the owner of a city.

Syntax:

int find_city_owner(string city_name);
Parameters:


1. city_name – a city name

Returns:

A number from 1-8 (representing player number) if true or success, 0 if false, -1 if failed.

Example:

london_owner = find_city_owner(“London”);
· Explanation: find_city_owner finds the owner of London and sets london_owner equal to it.

· find_city_with_num
Definition:
Finds the building ID of a city by number built (i.e. capital is 1, second city is 2, etc.).

Syntax:

int find_city_with_num( int who, int city_num);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. city_num – the number of the city

Returns:

A building ID if true or success, 0 if false, -1 if failed.

Example:

first_city_id = find_city_with_num(3, 1);
· Explanation: find_city_with_num finds the building ID of nation 3’s 1st city and then first_city_id is set equal to that value.

· get_city_level
Definition:

( Finds the level of a city.

Syntax:

int get_city_level( string city_name);
Parameters:
1. city_name – a city name

Returns:
The city level number (1, 2 or 3) if true or success, 0 if false, -1 if failed.

Example:

kabul_level = get_city_level(“Kabul”);
· Explanation: get_city_level finds the city level of Kabul and then kabul_level is set equal to that value.

· num_city_buildings
Definition:

Finds the number of a type of building a player has at a city.

Syntax:
int num_city_buildings( int who, string city_name, string build_type, int bool_count_inactive);

Parameters:
1. ( who – a nation index 1-8, based on nation color

2. city_name – a city name

3. build_type – a building type name

4. bool_count_inactive – true or false (0 or 1), count unfinished buildings

Returns:
The number of buildings of a type at a city a player has if true or success, 0 if false, -1 if failed.


Example:


seoul_farms = num_city_buildings(2, “Seoul”, “Farm”, 1);
· Explanation: num_city_buildings finds the number of Farms nation 2 has at Seoul, including ones not completely built yet.  Then seoul_farms is set equal to that value.

back to index
Comparison Checks

· at_least_age
Definition:

Triggered by a player reaching a certain age.

Syntax:

int at_least_age( int who, int age);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. ( age – age number (1-8)

Returns:

1 if true or success, 0 if false, -1 if failed. 

Example:

if (at_least_age(1, 8)) {

  research_tech_with_cost(2, “Information Age”);

}
· Explanation: at_least_age is triggered if nation 1 is in the Information Age.  If he is, then nation 2 will then research Information Age once it has the resources to pay for it.

· research_tech_with_cost – orders the AI to research a technology (as long as the prerequisites have been researched) once it has the resources to pay for it.  More
Similar Functions: (click on to go)


less_than_age
· at_least_buildings
Definition:

Triggered by a player having a certain number of buildings.

Syntax:

int at_least_buildings( int who, int num);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. num – an integer value for the number of buildings needed

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

if (at_least_buildings(2, 30)) {

  declare_war(1, 2);

}
· Explanation: at_least_buildings finds if nation 2 has at least 30 buildings.  If so, then nation 1 declares war on nation 2.

· declare_war – makes one nation declare war on another nation.  More
Similar Functions: (click on to go)

at_least_cities, at_least_civilian_buildings, at_least_civilian_units, at_least_military_buildings, at_least_military_units, at_least_points, at_least_pop, less_than_buildings, less_than_civilian_buildings, less_than_civilian_units, less_than_military_buildings, less_than_military_units, less_than_points, less_than_pop


· at_least_cities – works the same as at_least_buildings (More) , except that it is triggered by a certain number of Cities.

· at_least_civilian_buildings – works the same as at_least_buildings (More) , except that it is triggered by a certain number of civilian buildings.


· at_least_civilian_units – works the same as at_least_buildings (More) , except that it is triggered by a certain number of civilian  units.

· at_least_gather_rate
Definition:

Triggered by a player having a certain gather rate.

Syntax:

int at_least_gather_rate( int who, int num, string res_type);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. num – an integer value for the gather rate needed

3. ( res_type – a resource type name

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

if (at_least_gather_rate(4, 100, “Food”)) {

  research_tech_with_cost(4, “Coinage”);

}
· Explanation: at_least_gather_rate is triggered by nation four having a gather rate of at least 100 for Food.  If so, then the AI in control of nation 4 is ordered to research the technology of Coinage.

· research_tech_with_cost – orders the AI to research a technology (as long as the prerequisites have been researched) once it has the resources to pay for it.  More
Similar Functions: (click on to go)


less_than_gather_rate
· at_least_military_buildings - works the same as at_least_buildings (More) , except that it is triggered by a certain number of military buildings


· at_least_military_units - works the same as at_least_buildings (More) , except that it is triggered by a certain number of military units.

· at_least_points - works the same as at_least_buildings (More) , except that it is triggered by a certain number of points.

· at_least_pop - works the same as at_least_buildings (More) , except that it is triggered by a certain amount of points.

· at_least_type
Definition:

Triggered by a player having a certain number of a type.

Syntax:

int at_least_type( int who, int num, string type);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. num – an integer value for the amount of population needed

3. type – any game type name

Returns:

1 if true or success, 0 if false, -1 if failed

Example:

if (at_least_type(1, 3, “Umpakati”)) {

  train_unit_with_cost(2, 2, “Knight”);

}
· Explanation: at_least_type finds if nation 1 has at least 3 Umpakatis.  If so, then the AI in control of nation 2 is ordered to train 2 Knights once it has the resources to pay for them.

· train_unit_with_cost – orders an AI to train units once it has the resources to pay for them.  More
Similar Functions: (click on to go)


less_than_type
· at_least_unit_category
Definition:
Triggered by a player having a certain number of a unit category.  Categories: Foot, Mounted, Mech, Artillery, Command, Civilian, Sail (boats with sails), Naval (boats without sails), Air.

Syntax:

int at_least_unit_category( int who, int num, string unit_cat);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. num – an integer value for the amount of population needed

3. ( unit_cat – a unit category

Returns:

1 if true or success, 0 if false, -1 if failed

Example:

if (at_least_unit_category(1, 3, “Foot”)) {

  train_unit_with_cost(1, 3, “Knight”);

}
· Explanation: at_least_unit_category is triggered by nation 1 having at least 3 Foot units.  If so, then the AI in control of nation 1 is ordered to train 3 Knights, once he has the resources to pay for them.

· train_unit_with_cost – orders an AI to train units once it has the resources to pay for them.  More
Similar Functions: (click on to go)


less_than_unit_category
· less_than_age – works the opposite of at_least_age (More).  Instead it checks if a nation’s age is less than a certain age.

· less_than_buildings – works the opposite of at_least_buildings (More).  Instead it checks if a nation has less than a certain number of buildings.

· less_than_civilian_buildings – works the opposite of at_least_civilian_buildings (More).  Instead it checks if a nation has less than a certain number of civilian buildings.

· less_than_civilian_units – works the opposite of at_least_civilian_units (More).  Instead it checks if a nation has less than a certain number of civilian units.

· less_than_gather_rate – works the opposite of at_least_gather_rate (More).  Instead it checks if a nation has less than a certain gather rate of a certain resource.

· less_than_military_buildings – works the opposite of at_least_military_buildings (More).  Instead it checks if a nation has less than a certain number of military buildings.

· less_than_military_units – works the opposite of at_least_military_units (More).  Instead it checks if a nation has less than a certain number of military units.

· less_than_points – works the opposite of at_least_points (More).  Instead it checks if a nation has less than a certain number of points.

· less_than_pop – works the opposite of at_least_pop (More).  Instead it checks if a nation has less than a certain amount of population.

· less_than_type – works the opposite of at_least_type (More).  Instead it checks if a nation has less than a certain number of objects of a type.

· less_than_unit_category – works the opposite of at_least_unit_category (More).  Instead it checks if a nation has less than a certain number of units in a category.

· time_earlier_than
Definition:


Triggered by a certain time not yet being reached.

Syntax:


int time_earlier_than( int seconds);

Parameters:
1. seconds – time in minutes

Returns:


1 if true or success, 0 if false, -1 if failed.

Example:

if (time_earlier_than(30)) {

  give_good(1, “Food”, 100);

}
· Explanation: time_earlier_than is triggered as long as the game time is less than 30 minutes.  If so, then nation 1 is given 100 Food.

· give_good – gives a nation an amount of a certain good.  More
· time_later_than – works the same as time_earlier_than (above), except instead it checks if it is later than a certain time.

back to index
Conquer the World-only functions

· defeat_attacker_and_allies
Definition:

Defeats the attacker and his allies in a Conquer the World scenario.

Syntax:

int defeat_attacker_and_allies();
Parameters:

None

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

defeat_attacker_and_allies();
· field_battle_disable
Definition:
Disables special Field Battle rule in Conquer the World.  The rule allows units to entrench in neutral territory.


Syntax:


int field_battle_disable();

Parameters:


None


Returns:


1 if true or success, 0 if false, -1 if failed.


Example:


field_battle_disable();
· field_battle_enable – works the same as field_battle_disable (above), except it turns on the special Field Battle rule in Conquer the World of units being allowed to entrench in neutral territory.
· get_conquest_invasion_dir
Definition:
Gets the direction from which troops invaded from in Conquer the World.  See the script defruntime1.bhs, located in the game /conquest/scripts directory for a more detailed example.

Syntax:

int get_conquest_invasion_dir();
Parameters:

None

Returns:



A degree from 0-360 if true or success, -1 if failed.


Example:


invasion_direction = get_conquest_invasion_dir();
· Explanation: get_conquest_invasion_dir sets invasion_direction equal to the degree (from 0-360) from which the attacking army invaded from in Conquer the World.

· group_jump_move
Definition:
Jump moves the current group to a new location in Conquer the World scenarios.  See the battlesetup.bhs script file located in the game /conquest/scripts directory to find a more detailed example.


Syntax:


int group_jump_move( int who, int x, int y, int num_angle);

Parameters:
1. ( who – a nation index 1-8, based on nation color

2. x – game world X position

3. y – game world Y position

4. num_angle – an integer value

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

group_jump_move(2, 15, 15, 25);
· Explanation: group_jump_move jump moves the current group for nation 2 to the coordinates 15,15, and has them face towards 25 degrees around the map (on a scale of 0-360).

· is_conquest_scenario
Definition:



Finds if the current scenario is a conquest scenario.

Syntax:

int is_conquest_scenario();
Parameters:

None

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

is_conquest_scenario();
back to index
Create Objects

· create_building
Definition:

Creates a new building for a player.

Syntax:

int create_building( int who_receiver, int x, int y, string build_type);
Parameters:
1. ( who_receiver – a nation index 1-8, based on nation color

2. x – game world X position

3. y – game world Y position

4. build_type – a building type name

Returns:


The new building’s ID if true or success, 0 if false, -1 if failed.

Examples:
new_id = create_building(2, 155, 165, “Stable”);
· Explanation: create_building creates a Stable for nation 2 at the game world coordinates 155, 165 and sets new_id equal to the new building’s ID number.

Similar Functions: (click on to go)


create_building_upgrade
· create_building_near
Definition:
Creates a new building for a player, and gives some slack for placement if the exact game world coordinates are already occupied.

Syntax:
int create_building_near( int who_receiver, int x, int y, string build_type, int dist_radius);
Parameters:
1.   ( who_receiver – a nation index 1-8, based on nation color



2. x – game world X position

3. y – game world Y position

4. build_type – a building type name

5. dist_radius – game world distance radius (in “tile units”)

Returns:


The new building’s ID if true or success, 0 if false, -1 if failed.

Examples:

new_id = create_building_near(2, 155, 165, “Stable”, 10);
· Explanation: create_building_near creates a Stable for nation 2 within 10 tiles of the game world coordinates 155, 165 and sets new_id equal to the new building’s ID number.

· create_building_upgrade – works the same as create_building (More), except it creates the current upgrade of the building.

· create_unit
Definition:
Creates a new unit for a player.  Clears the current group and starts a new one with this unit.  Can create more than one unit.

Syntax:
int create_unit( int who_receiver, int x, int y, string unit_type, int num_units);
Parameters:
1.   ( who_receiver – a nation index 1-8, based on nation color

2.   x – game world X position

3.   y – game world Y position

4.   unit_type – a unit type name

5.   num_units – an integer value

Returns:


The unit ID of the first unit you create if true or success, 0 if false, -1 if failed.

Examples:

new_id = create_unit(2, 155, 165, “Inti Clubmen”, 5);
· Explanation: create_unit creates 5 Inti Clubmen for nation 2 at the game world coordinates 155, 165 and sets new_id equal to the first created unit’s ID number.  Clears the current group and places them into a new group.


Similar Functions: (click on to go)



create_unit_in_group, create_unit_upgrade
· create_unit_in_group – works the same as create_unit (above), except that it creates the current upgrade of the unit and does not clear the current group.  The created unit is added to the current group.
· create_unit_upgrade – works the same as create_unit (More), except that it creates the current upgrade of the unit.

back to index
Destroy/Kill Objects

· destroy_building
Definition:

Destroys a building.

Syntax:

int destroy_building( int who, int build_o);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. build_o – a building ID

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

destroy_building(2, 2011);
· Explanation: destroy_building destroys nation 2’s building with the ID of 2011.

· destroy_building_type
Definition:

Destroys all of a player’s buildings of a certain type.

Syntax:

int destroy_building_type( int who, string build_type);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. build_type – a building type’s name

Returns:

The number of buildings destroyed if true or success, 0 if false, -1 if f
failed.

Examples:
how_many_destroyed = destroy_building_type(3, “Farm”);
· Explanation: destroy_building_type destroys all of nation 3’s Farms, and how_many_destroyed is set equal to the number of nation 3’s Farms destroyed.

· kill_unit
Definition:

Kills a unit.

Syntax:

int kill_unit( int who, int unit_o);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. unit_o – a unit ID

Returns:


1 if true or success, 0 if false, -1 if failed.

Example:

kill_unit(3, 25);
· Explanation: kill_unit kills nation 3’s unit with the ID of 25.

· kill_unit_anim
Definition:

Kills a unit in a certain way.  Animations to choose from:

· 1, no animation

· 2, stabbed

· 3, shot

· 4, exploded

Syntax:

int kill_unit_anim( int who, int unit_o, int unit_anim_id);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. unit_o – a unit ID

3. ( unit_anim_id – unit animation ID (1-4, above)

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

kill_unit_anim(6, 10, 4);
· Explanation: kill_unit_anim kills nation 6’s unit with the ID of 10.  The unit dies using an exploded death animation.

· kill_unit_type
Definition:



Kills all of a player’s units of a certain type.


Syntax:


int kill_unit_type( int who, string unit_type);

Parameters:
1. ( who – a nation index 1-8, based on nation color

2. unit_type – a unit type name

Returns:

How many units were killed if true or success, 0 if false, -1 if failed.

Examples:

how_many_killed = kill_unit_type(7, “Scholar”);
· Explanation: kill_unit_type kills all of nation 7’s Scholars, and sets how_many_killed equal to the number of nation 7’s Scholars that were killed.

· kill_unit_type_anim
Definition:

Kills all of a player’s units of a certain type in a certain way. Animations to choose from:

Syntax:


int kill_unit_type_anim( int who, string unit_type, int unit_anim_id);

Parameters:
1.   ( who – a nation index 1-8, based on nation color

2.   unit_type – a unit type name

3. ( unit_anim_id – unit animation ID (1-4, above)

Returns:

How many units were killed if true or success, 0 if false, -1 if failed.

Examples:

how_many_killed = kill_unit_type_anim(5, “Caravan”, 3);
· Explanation: kill_unit_type_anim kills all of nation 5’s Caravans, and sets how_many_killed equal to the number of nation 5’s Caravans that were killed.  All the units die using a shot animation.

back to index
Diplomacy

· accept_offer
Definition:

Forces a player to accept another player’s diplomatic offer.

Syntax:
int accept_offer( int who_acceptor, int who_asker);
Parameters:
1. ( who_acceptor – a nation index 1-8, based on nation color

2. ( who_asker – a nation index 1-8, based on nation color

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

accept_offer(1, 2);
· Explanation: accept_offer forces nation 1 to accept nation 2’s offer.

Similar Functions: (click on to go)


reject_offer
· add_visibility
Definition:

Gives a player another player’s visibility.

Syntax:

int add_visibility( int who, int who_target);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. ( who_target – a nation index 1-8, based on nation color

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

add_visibility(1, 2);
· Explanation: add_visibility gives nation 1 nation 2’s visibility.

Similar Functions: (click on to go)


remove_visibility
· amount_offered
Definition:


Finds out how much resources have been offered from one player to another.

Syntax:

int amount_offered( int who_offering, int who_offered, string res_type);
Parameters:
1. ( who_offering – a nation index 1-8, based on nation color

2. ( who_offered – a nation index 1-8, based on nation color

3. ( res_type – a resource type name

Returns:

The amount offered if true or success, 0 if false, -1 if failed.

Example:

food_offered = amount_offered(1, 2, “Food”);
· Explanation: amount_offered finds out how much food nation 1 offered nation 2 and sets food_offered equal to that amount.

· contact_open
Definition:



Finds if the contact window is open and with who.

Syntax:


int contact_open();
Parameters:


None


Returns:
The player number contact is open with if true or success, 0 if false, -1 if failed.


Example:


contact_open();
· declare_war
Definition:

Forces a player to declare war on another player.

Syntax:

int declare_war( int who_declarer, int who_declaree);
Parameters:
1. ( who_declarer – a nation index 1-8, based on nation color, who declares war

2. ( who_declaree – a nation index 1-8, based on nation color, who war is declared on

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

declare_war(1, 2);
· Explanation: declare_war forces nation 1 to declare war on nation 2.

· demand_tribute
Definition:

Makes a player demand tribute from another player.

Syntax:
int demand_tribute( int who_asker, int who_askee, string res_type, int num);

Parameters:
1. ( who_asker – a nation index 1-8, based on nation color, who demands tribute

2. ( who_askee – a nation index 1-8, based on nation color, who tribute is demanded from

3. ( res_type – a resource type name

4. num – an integer value, how much is demanded

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

demand_tribute(7, 8, “Metal”, 100);
· Explanation: demand_tribute makes nation 7 demand 100 Metal in tribute from nation 8.

· diplomacy_block_war
Definition:

Blocks a nation from declaring war on another nation.

Syntax:

int diplomacy_block_war( int who_blocking, int who_blocked);
Parameters:
1. ( who_blocking – a nation index 1-8, based on nation color

2. ( who_blocked – a nation index 1-8, based on nation color

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

diplomacy_block_war(2, 1);
· Explanation: diplomacy_block_war blocks nation 1 from declaring war on nation 2.

· diplomacy_enable_war – works the same as diplomacy_block_war (above), , except it allows a nation to declare war on another nation.

· diplomacy_open
Definition:

Finds if the diplomacy window is open.

Syntax:

int diplomacy_open();
Parameters:

None

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

diplomacy_open();
· diplomacy_set_accept
Definition:

Makes a player accept a diplomatic offer.

Syntax:

int diplomacy_set_accept( int who);
Parameters:
1. ( who – a nation index 1-8, based on nation color

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

diplomacy_set_accept(8);
· Explanation: diplomacy_set_accept makes nation 8 accept a diplomatic offer.

Similar Functions: (click on to go)


diplomacy_set_reject
· diplomacy_set_auto
Definition:

Sets an AI player to automatically resolved diplomacy.

Syntax:

int diplomacy_set_auto( int who);
Parameters:


1.   ( who – a nation index 1-8, based on nation color


Returns:


1 if true or success, 0 if false, -1 if failed


Example:


diplomacy_set_auto(3);
· Explanation: diplomacy_set_auto sets nation 3’s diplomacy to be automatically resolved.

· diplomacy_set_reject – works the same as diplomacy_set_accept (More), except it makes a nation reject a diplomatic offer.

· diplomacy_set_wait
Definition:



Sets an AI player to wait to resolve diplomacy.


Syntax:


int diplomacy_set_wait( int who);

Parameters:


1.   ( who – a nation index 1-8, based on nation color.


Returns:


1 if true or success, 0 if false, -1 if failed.


Example:


diplomacy_set_wait(5);
· Explanation: diplomacy_set_wait sets nation 5 to wait to resolve diplomacy.

· have_alliance
Definition:

Finds if a nation has an alliance with another nation.

Syntax:

int have_alliance( int who, int whom);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. ( whom – a nation index 1-8, based on nation color

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

have_alliance(3, 4);
· Explanation: have_alliance finds if nation 3 has an alliance with nation 4.

Similar Functions: (click on to go)


have_contact, have_fought, have_peace, have_trade, have_war
· have_contact – works like have_alliance (above), except for it finds if a nation has contact with another nation.


· have_fought – works like have_alliance (More), except for it finds if a nation has fought with another nation.

· have_peace – works like have_alliance (More), except for it finds if a nation has peace with another nation.

· have_trade – works like have_alliance (More), except for it finds if a nation has trade with another nation.  Trade is defined as having a Caravan going between a City of one nation and a City of another.

· have_war – works like have_alliance (More), except for it finds if a nation has war with another nation.

· is_offering_alliance
Definition:

Finds if a player is offering another player an alliance.

Syntax:

int is_offering_alliance( int who_asker, int who_askee);
Parameters:
1. ( who_asker – a nation index 1-8, based on nation color

2. ( who_askee – a nation index 1-8, based on nation color

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

is_offering_alliance(3, 8);
· Explanation: is_offering_alliance finds if nation 3 is offering nation 8 an alliance.

Similar Functions: (click on to go)


is_offering_peace
· is_offering_peace – works the same as is_offering_alliance (More), except it finds if a nation is offering another nation peace.

· make_counter_offer
Definition:
Makes a counter-offer to a previous offer, changing the resources involved and sending a new message.

Syntax:
int make_counter_offer( int who_initial_offer, int who_counter_offer, string res_type, int num_amount, string message);

Parameters:
1. ( who_initial_offer – a nation index 1-8, based on nation color

2. ( who_counter_offer – a nation index 1-8, based on nation color

3. ( res_type – a resource type name

4. num_amount – an integer value, the amount of a resource to involve

5. message – a typed message sent to the who_initial_offer

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

make_counter_offer(3, 1, “Oil”, 500, “Does this sound better?”);
· Explanation: make_counter_offer makes nation 1 makes a counter offer to nation 1 that nation 3 add 500 more Oil to the offer, and sends nation 3 a message from nation 1 asking, “Does this sound better?”

· offer_accepted
Definition:


Finds if a player has accepted another player’s offer.

Syntax:

int offer_accepted( int who_who_asker, who_askee);
Parameters:

1.   ( who_who_asker – a nation index 1-8, based on nation color


2.   ( who_askee – a nation index 1-8, based on nation color

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

offer_accepted(3, 7);
· Explanation: offer_accepted finds if nation 7 has accepted nation 3’s offer.
Similar Functions: (click on to go)


offer_rejected
· offer_alliance
Definition:


Makes a player offer an alliance to another player.

Syntax:

int offer_alliance( int who_asker, int who_askee);
Parameters:
1. ( who_asker – a nation index 1-8, based on nation color

2. ( who_askee – a nation index 1-8, based on nation color

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

offer_alliance(4, 2);
· Explanation: offer_alliance makes nation 4 offer an alliance to nation 2.

Similar Functions: (click on to go)


offer_peace
· offer_made
Definition:

Finds if an offer was made from one player to another.

Syntax:

int offer_made( int who_who_asker, int who_askee);
Parameters:

1.   ( who_who_asker – a nation index 1-8, based on nation color


2.   ( who_askee – a nation index 1-8, based on nation color

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:


offer_made(6, 7);
· Explanation: offer_made finds if nation 6 has made an offer to nation 7.

· offer_mutual_attack
Definition:



Makes a player propose that he and another player attack a third player.


Syntax:


int offer_mutual_attack( int who_asker, int who_askee, int who_target);

Parameters:
1. ( who_asker – a nation index 1-8, based on nation color

2. ( who_askee – a nation index 1-8, based on nation color

3. ( who_target – a nation index 1-8, based on nation color

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

offer_mutual_attack(2, 1, 3);
· Explanation: offer_mutual_attack makes nation 2 proposes to nation 1 that they mutually attack nation 3.

· offer_peace – works the same as offer_alliance (More), except it makes a nation offer peace to another nation.

· offer_rejected – works the opposite of offer_accepted (More).  It finds if an offer was rejected.

· offer_tribute
Definition:

Makes a nation offer tribute to another nation.

Syntax:
int offer_tribute( int who_sender, int who_receiver, string res_type, int num);

Parameters:
1. ( who_sender – a nation index 1-8, based on nation color

2. ( who_receiver – a nation index 1-8, based on nation color

3. ( res_type – a resource type name

4. num – an integer value, how much of a resource to offer

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

offer_tribute(5, 4, “Food”, 500);
· Explanatoin: offer_tribute makes nation 5 offer nation 4 500 Food.

· reject_offer – works the opposite of accept_offer (More).  It makes a nation reject another nation’s offer.

· remove_visibility – works the opposite of add_visibility (More).  It removes visibility of one nation from another nation.

· revoke_offer
Definition:

Revoke an offer that a player made to another player.

Syntax:

int revoke_offer( int who_asker, int who_askee);
Parameters:
1. ( who_asker – a nation index 1-8, based on nation color

2. ( who_askee – a nation index 1-8, based on nation color

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

revoke_offer(3, 4);
· Explanation: revoke_offer revokes an offer made by nation 3 to nation 4. 

· was_attacked
Definition:
Finds if a player has been attacked by another player. 

Syntax:

int was_attacked( int who_defender, int who_attacker, int seconds);
Parameters:
1. ( who_defender – a nation index 1-8, based on nation color

2. ( who_attacker – a nation index 1-8, based on nation color

3. seconds – time in seconds, pass in a –1 to see if the player was ever attacked by the other player.

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

was_attacked(3, 8, -1);
· Explanation: was_attacked finds if nation 3 has ever been attacked by nation 8.

Similar Functions: (click on to go)


was_raided
· was_capital_attacked - works like was_city_attacked (More), except for it finds if a nation’s capital was attacked by another nation.

· was_city_attacked
Definition:
Finds if a player’s city has been attacked. 

Syntax:

int was_city_attacked( int who_defender, string city_name, int seconds);
Parameters:
1.   ( who_defender – a nation index 1-8, based on nation color

2.   city_name – a city name

3.   seconds – time in seconds, pass in a –1 to see if the player’s city was ever attacked

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

was_city_attacked(4, “Shanghai”, 600);
· Explanation: was_city_attacked finds if nation 4’s city of Shanghai has been attacked in the last 600 seconds.

Similar Functions: (click on to go)


was_capital_attacked, was_city_raided
· was_city_raided - works like was_city_attacked (above), except for it finds if a City was raided by another nation.
· was_raided – works like was_attacked (More), except for it finds if a nation was raided by another nation.

back to index
Flags

· add_flag
Definition:

Draws a flag at a certain location on the map.

Syntax:


int add_flag( int x, int y);
Parameters:

1. x – game world X position

2. y – game world Y position

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

add_flag(15, 15);
· Explanation: add_flag draws a flag at position 15, 15 on the map.

· clear_flags
Definition:

Clears all flags on the map.

Syntax:


int clear_flags();
Parameters:

none

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

clear_flags();
back to index
Game Settings Info

· building_costs_disable
Definition:

Disables the cost of buildings.

Syntax:

int building_costs_disable();
Parameters:

None

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

building_costs_disable();
· building_costs_enable – works the same as building_costs_disable (above), except it enables the costs of buildings.

· building_resource_bonus_disable
Definition:

Disables building completion bonus resources.

Syntax:

int building_resource_bonus_disable();
Parameters:

None

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

building_resource_bonus_disable();
· building_resource_bonus_enable – works the same as building_resource_bonus_disable (above), except it enables building completion bonus resources.

· building_unit_bonus_disable
Definition:

Disables building completion free unit bonus.

Syntax:

int building_unit_bonus_disable();
Parameters:

None

Returns


1 if true or success, 0 if false, -1 if failed.

Example:

building_unit_bonus_disable();
· building_unit_bonus_enable – works the same as building_unit_bonus_disable (above), except it enables building completion free unit bonus.

· buildings_gather_disable
Definition:

Disables the collection of resources from buildings.

Syntax:

int buildings_gather_disable();
Parameters:

None

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

buildings_gather_disable();
· buildings_gather_enable – works the same as buildings_gather_disable (above), except it enables the collection of resources from building.

· get_difficulty
Definition:

( Finds the difficulty of the scenario.

Syntax:

int get_difficulty();
Parameters:

None

Returns:

A number 1-6 to indicate the difficulty level if true or success, 0 if false, -1 if failed.


Example:


diff = get_difficulty();
· Explanation: get_difficulty finds the difficulty and then diff is set equal to it.

· get_no_nation_powers
Definition:

Finds if the game is set to no nation powers.

Syntax:

int get_no_nation_powers();
Parameters:


None


Returns:


1 if true or success, 0 if false, -1 if failed.


Example:


get_no_nation_powers();
· get_leader_difficulty
Definition:

( Finds the difficulty settings of one AI player.

Syntax:

int get_leader_difficulty( int who);
Parameters:

1.   ( who – a nation index 1-8, based on nation color

Returns:

A number 1-6 to indicate the difficulty level if true or success, 0 if false, -1 if failed.


Example:


diff_8 = get_leader_difficulty(8);
· Explanation: get_leader_difficulty finds the difficulty setting of the AI nation 8 and sets diff_8 equal to that number.

· get_leader_name
Definition:

Finds the name of a leader.

Syntax:

string get_leader_name( int who);
Parameters:

1.  ( who – a nation index 1-8, based on nation color

Returns:
 
A string value.

Example:
 
british_leader = get_leader_name(7);
· Explanation: get_leader_name finds the name of the leader of nation 7 and sets british_leader equal to it.

· get_player_profile_name
Definition:

Finds the name of the current player profile.

Syntax:

string get_player_profile_name( int who);
Parameters:

None

Returns:


A string value.

Example:

player_name = get_player_profile_name();
· Explanation: get_player_profile_name finds the name of the current player profile and sets player_name equal to it.

· get_rush_rules
Definition:


Finds the rush rules. (
Syntax:

int get_rush_rules();

Parameters:

None
Returns:


An integer value from 0-14 (listed above) if true, 0 if false, -1 if failed. (
Example:

rushing_rules = get_rush_rules();
· Finds the rush rules and assigns rushing_rules to that number.

· is_victory_conquest
Definition:

Finds if the victory condition is conquest.

Syntax:

int is_victory_conquest();
Parameters:

None


Returns:


1 if true or success, 0 if false, -1 if failed.


Example:


conquest = is_victory_conquest();
· Explanation: is_victory_conquest finds if the victory is conquest and conquest is set equal to the result.


Similar Functions: (click on to go)

is_victory_economic,
is_victory_musical_chairs, is_victory_score, is_victory_standard, is_victory_sudden_death, is_victory_tech_race, is_victory_territory, is_victory_time_limit, is_victory_wonder
· is_victory_economic – works like is_victory_conquest (above), except that it checks if the victory condition is economic.

· is_victory_musical_chairs – works like is_victory_conquest (More), except that it checks if the victory condition is musical_chairs

· is_victory_score – works like is_victory_conquest (More), except that it checks if the victory condition is score.

· is_victory_standard – works like is_victory_conquest (More), except that it checks if the victory condition is standard.

· is_victory_sudden_death – works like is_victory_conquest (More), except that it checks if the victory condition is sudden death.

· is_victory_tech_race – works like is_victory_conquest (More), except that it checks if the victory condition is a technology race.

· is_victory_territory – works like is_victory_conquest (More), except that it checks if the victory condition is territory.

· is_victory_time_limit – works like is_victory_conquest (More), except that it checks if the victory condition is time limit.

· is_victory_wonder – works like is_victory_conquest (More), except that it checks if the victory condition is wonder.
· pause_disable
Definition:

Disables use of the pause key.

Syntax:

int pause_disable();
Parameters:

None

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

pause_disable();
· pause_enable – works the same as pause_disable (above), except it enables use of the pause key.

· plunder_disable
Definition:

Disables plunder resource bonus from destroying buildings.

Syntax:

int plunder_disable();
Parameters:

None

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

plunder_disable();
· plunder_enable – works same as plunder_disable (above), except it enables plunder resource bonus for destroying buildings.

· set_difficulty
Definition:

Sets the difficulty of AI opponents.

Syntax:

int set_difficulty( int num_difficulty)
Parameters:

1.   ( num_difficulty – an integer value (key listed above)

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

set_difficulty(3);
· Explanation: set_difficulty sets the AI difficulty to Moderate.

· set_leader_difficulty
Definition:

Sets the difficulty of an AI opponent.

Syntax:

int set_leader_difficulty( int who, int num_difficulty)
Parameters:


1.   ( who – a nation index 1-8, based on nation color


2.   ( num_difficulty – an integer value (key listed above)

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

set_leader_difficulty(2, 3);


Sets the AI controlling nation 2 to the difficulty of Moderate.

· set_leader_name
Definition:

Sets the name of the leader of the player (displayed in score).

Syntax:

int set_leader_name( int who, string str);

Parameters:

1.   ( who – a nation index 1-8, based on nation color


2.   str – a string value (what to change the name to)

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

set_leader_name(3, “Topa Inca);
· Explanation: set_leader_name sets the leader name of nation 3 to Topa Inca.

· speed_control_disable
Definition:

Disables the ability to change the game speed.

Syntax:

int speed_control_disable();
Parameters:

None

Returns:


1 if true or success, 0 if false, -1 if failed.

Example:

speed_control_disable();
· speed_control_enable – works the same as speed_control_disable (above), except it enables the ability to change the game speed.

· switch_player_control
Definition:

Switches the nation that the player controls.

Syntax:

int switch_player_control( int who);
Parameters:

1.   ( who – a nation index 1-8, based on nation color

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

switch_player_control(8);
· Explanation: switch_player_control changes the nation the player controls to nation 8.

· tech_costs_disable
Definition:

Disables costs for technologies.

Syntax:

int tech_costs_disable();
Parameters:

None

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

tech_costs_disable();
· tech_costs_enable  - works the same as tech_costs_disable (above), except it enables costs for technologies.

· unit_costs_disable
Definition:

Disables costs for units.

Syntax:

int unit_costs_disable();
Parameters:

None

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

unit_costs_disable();

back to index
· unit_costs_enable – works the same as unit_costs_disable (above), except it turns on unit costs.

back to index
General AI Toggles

· disable_all_unit_ai
Definition:

Disables all of a nation’s global unit AI.

Syntax:

int disable_all_unit_ai( int who);
Parameters:

1.   ( who – a nation index 1-8, based on nation color

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

disable_all_unit_ai(3);
· Explanation: disable_all_unit_ai disables nation 3’s global unit AI.

· disable_city_ai
Definition:

Prevents AI from founding new cities.

Syntax:

int disable_city_ai( int who);
Parameters:

1.   ( who – a nation index 1-8, based on nation color

Returns:


1 if true or success, 0 if false, -1 if failed.

Example:

disable_city_ai(3);
· Explanation: disable_city_ai prevents the AI in control of nation e from building a city.

· disable_city_defeat
Definition:
Disables a nation from being defeated by losing all his buildings and units.

Syntax:

int disable_city_defeat( int who);
Parameters:

1.   ( who – a nation index 1-8, based on nation color

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

disable_city_defeat(5);
· Explanation: disable_city_defeat disables nation 5 from being defeated by losing all his buildings and units.

· disable_combat_ai
Definition:

Disables unit combat AI.  Units only respond to their stance.

Syntax:

int disable_combat_ai( int who);
Parameters:

1.   ( who – a nation index 1-8, based on nation color

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

disable_combat_ai(8);
· Explanation: disable_combat_ai disables unit combat AI for nation 8.

· disable_production_ai
Definition:

Disables a computer nation’s production AI.

Syntax:

int disable_production_ai( int who);

Parameters:

1.   ( who – a nation index 1-8, based on nation color

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

disable_production_ai(3);
· Explanation: disable_production_ai disables production AI for nation 3 if he is a computer player.

· disable_unit_ai
Definition:

Disables the unit AI of one unit.

Syntax:

int disable_unit_ai( int who, int unit_o);
Parameters:

1.   ( who – a nation index 1-8, based on nation color


2.   unit_o – a unit ID

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

disable_unit_ai(4, 15);
· Explanation: disable_unit_ai disables the unit AI of nation 4’s unit with the ID of 15.

· enable_all_unit_ai – works like disable_all_unit_ai (More), except it enables all of a nation’s global AI.

· enable_city_ai – works like disable_city_ai (More), except it enables the computer’s ability to build cities.

· enable_city_defeat – works like disable_city_defeat (More), except it enables a nation’s ability to be defeated by losing all his cities.

· enable_combat_ai – works like disable_combat_ai (More), except it enables unit combat AI.  Units only respond to their stance.

· enable_production_ai – works like disable_production_ai (More), except it enables a nation’s production AI.

· enable_unit_ai  - works like enable_unit_ai (More), except it enables the unit AI of one unit.

· force_transport_ability
Definition:
Allow units to transport across water even if they don’t have the requirements.


Syntax:



int force_transport_ability( int who);

Parameters:


1.  (  who – a nation index 1-8, based on nation color


Returns:


1 if true or success, 0 if false, -1 if failed.


Example:


force_transport_ability(3);
· Explanation: force_transport_ability allows nation 3 to transport units across water even if he does not have the necessary requirements.

· load_production_script
Definition:

Changes the default AI “best build” script.  Looks for scripts in the game ai/scripts folder.

Syntax:

int load_production_script( int who, string filename);
Parameters:

1.   ( who – a nation index 1-8, based on nation color


2.   filename – the name of an AI production script (ex. “economic.bhs”)

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

load_production_script(5, “economic.bhs”);
· Explanation: load_production_script changes the default production script for nation 5 to economic.bhs.

· set_auto_peasant_level
Definition:
Sets the auto peasant level.

Syntax:

int set_auto_peasant_level( int num_level);
Parameters:

1.   num_level – an integer value (0-3, 3 is equal to no auto peasant action)

Returns:

1 if true or success, 0 if false, -1 if failed.


Example:


set_auto_peasant_level(3);
· Explanation: set_auto_peasant_level sets the auto peasant level to none.

back to index
Groups

· group_id
Definition:
Gets the ID of a unit in the current group.  Consecutive calls cycles through all units in the group.


Syntax:


int group_id( int who);

Parameters:
1. ( who – a nation index 1-8, based on nation color

Returns:

The next unit ID in the group if true or success, 0 if false, -1 if failed.

Example:

unit_id = group_id(3);
· Explanation: group_id finds the unit ID of the next unit in nation 3’s current group and then unit_id is set equal to that value.

· involved_id
Definition:

Returns the next ID of a unit in the involved list.

Syntax:

int involved_id();
Parameters:

none

Returns:
The next ID of a unit in the involved list if true or success, 0 if false, -1 if failed.


Example:


unit_id = involved_id();
· Explanation: involved_id finds the next ID of a unit in the involved list and then unit_id is set equal to that value.

· involved_nation
Definition:

Returns the nation of the involved units.
Syntax:

int involved_nation();
Parameters:

none

Returns:
The nation index of the involved units if true or success, 0 if false, -1 if failed.

Example:

player = involved_nation();
· Explanation: involved_nation finds the nation of the involved units and then player is set equal to that value.

· num_in_group
Definition:

Gets the number of units in a certain nation’s stored group.

Syntax:

int num_in_group( int who);
Parameters:
1. ( who – a nation index 1-8, based on nation color

Returns:
The number of units in a certain nation’s stored group if true or success, 0 if false, -1 if failed.


Example:


group_size = num_in_group(5);
· Explanation: num_in_group finds the number of units in nation 5’s stored group and then group_size is set equal to that value.

· num_involved
Definition:

Returns the number of units or buildings involved in the last query.

Syntax:

int num_involved();
Parameters:

none

Returns:
The number of units or buildings involved in the last query if true or success, 0 if false, -1 if failed.

Example:

group_size = num_involved();
back to index
Health

· damage_object
Definition:

Damages a certain object by a specified percent.

Syntax:

int damage_object( int who, int object_o, int percent);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. object_o – a unit or building ID

3. percent – a percent (integer 0-100)

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

damage_object(5, 2024, 50);
· Explanation: damage_object damages nation 5’s building with the ID of 2024 by 50 percent.

Similar Functions: (click on to go)


heal_object
· heal_object – works like damage_object (More), except it heals a certain object by a specified percent.

· object_health
Definition:

Returns the health of an object.

Syntax:

int object_health( int who, int object_o);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. object_o – a building or unit ID

Returns:

The health of an object if true or success, 0 if false, -1 if failed.

Example:

building_health = object_health(2, 2015);
· Explanation: object_health finds the object health of nation 2’s building with the ID of 2015 and then building_health is set equal to that value.


· object_max_health
Definition:

Returns the max health of an object.

Syntax:

int object_max_health( int who, int object_o);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. object_o – a building or unit ID

Returns:

The max health of an object if true or success, 0 if false, -1 if failed.

Example:

unit_max_health = object_max_health(8, 13);
· Explanation: object_max_health finds the max health of nation 8’s unit with the ID of 13 and then unit_max_health is set equal to that value.

· set_object_health
Definition:

Sets the health of an object to a specified percent.

Syntax:

int set_object_health( int who, int object_o, int percent);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. object_o – a unit or building ID
3. percent – a percent (integer 0-100)
Returns:
1 if true or success, 0 if false, -1 if failed.



Example:


set_object_health(4, 24, 90);
· Explanation: set_object_health sets the health of nation 4’s unit with the ID of 24 equal to 90 percent.

· set_object_type_max_health
Definition:

Sets the maximum health of an object type.

Syntax:

int set_object_type_max_health( string object_type, int num_hitpoints);
Parameters:
1. object_type – a building or unit type name

2. num_hitpoints – an integer value

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

set_object_type_max_health(“Inti Clubmen”, 500);
· Explanation: set_object_type_max_health sets the maximum health of all Inti Clubmen to 500 hit points.

back to index
Keyboard Events

· key_down
Definition:

A trigger that activates when a key is down.

Syntax:

int key_down( string key);
Parameters:
1. key – a string with one character

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

key_down(“a”);
· Explanation: key_down is triggered when the “a” key is down.

· key_released – works the same as key_down (above), except it is triggered when a key is released.

back to index
Map Info

· clear_extra_starting_locs
Definition:
Clears extra starting location found using the find_extra_starting_loc function.


Syntax:


void clear_extra_starting_locs();

Parameters:


None


Returns:



Nothing (0 if used in an expression).


Example:


clear_extra_starting_locs();
· find_extra_starting_loc
Definition:

Finds extra starting locations for player’s capitals.

Syntax:
int find_extra_starting_loc( int num_nation_space, int num_land_space, int bool_only_check_player);
Parameters:
1. num_nation_space – an integer value

2. num_land_space – an integer value

3. bool_only_check_player – true or false (1 or 0)

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

find_extra_starting_loc(4, 12, 1);
· Explanation: find_extra_starting_loc finds an extra starting location.

· get_extra_starting_loc_x
Definition:

Gets the game world X location found with find_extra_starting_loc.

Syntax:


int get_extra_starting_loc_x();
Parameters:

None

Returns:
An integer value representing the game world X coordinate found with get_extra_starting_loc_x if true or success, 0 if false, -1 if failed.

Example:

x = get_extra_starting_loc_x();
· Explanation: get_extra_starting_loc finds the game world X location found with find_extra_starting_loc (More) and then x is set equal to that value.
· get_extra_starting_loc_y – works the same as get_starting_loc_x (above), except it gets the game world Y location found with find_extra_starting_loc (More).

· get_map_size
Definition:

Finds the size of the map in game world X and Y coordinates.

Syntax:

int get_map_size();
Parameters:

None

Returns:
An integer value representing the highest X or Y value possible on the map if true or success, 0 if false, -1 if failed.

Example:

map_size = get_map_size();
· Explanation: get_map_size finds the size of the map and then map_size is set equal to that value.

· get_mapstyle
Definition:

Finds what type of map is being played.

Syntax:

string get_mapstyle();
Parameters:

None

Returns:
A string value of what style of map is being played if true or success, 0 if false (if used in an expression).

Example:

mapstyle = get_mapstyle();
· Explanation: get_mapstyle finds what style of map is being played and then mapstyle is set equal to that value.

· get_tileset
Definition:

Finds what type of tile set is being used. (
Syntax:

string get_tileset();
Parameters:

None

Returns:
A string value of what style of tile set is being used if true or success, 0 if false (if used in an expression).

Example:

tileset = get_tileset();
· Explanation: get_tileset finds what style of tile set is being used and then tileset is set equal to that value.

· map_is_buildable
Definition:

Finds if buildings can be placed on a specific tile.

Syntax:

int map_is_buildable( int x, int y);
Parameters:

1.   x – game world X position

2. y – game world Y position

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

map_is_buildable(3, 3);
· Explanation: map_is_buildable finds if game world location 3 ,3 is suitable for building placement.

Similar Functions: (click on to go)


map_is_land, map_is_passable
· map_is_land – works the same as map_is_buildable (above), except it finds if a specific tile is land.

· map_is_passable – works the same as map_is_buildable (More), except it finds if a specific tile is passable by units.

· territory_object
Definition:

Finds who owns the territory of the tile that an object is currently located.

Syntax:

int territory_object( int who, int object_o);
Parameters:

1.   ( who – a nation index 1-8, based on nation color


2.   object_o – a building or unit ID

Returns:
( A number 1-8 (the nation index) if true or success, 0 if false, -1 if failed.

Example:

current_territory = territory_object(3, 38);
· Explanation: territory_object finds whose territory nation 3’s unit with the ID of 38 is current traveling through and current_territory is then set equal to it.

· territory_owner
Definition:

Finds the current owner of a specific location on the map.

Syntax:

int territory_owner( int x, int y);
Parameters:

1.   x – game world X position


2.   y – game world Y position

Returns:
( A number 1-8 (the nation index), 0 if false or no one owns the tile, -1 if failed.

Example:

current_owner = territory_owner(211, 154);
· Explanation: territory_owner finds the current owner of tile 211, 154 and current_owner is then set equal to it.

· world_x_size
Definition:

Finds the game world X size.

Syntax:

int world_x_size();
Parameters:

None

Returns:
An integer value representing the game world X size if true or success, 0 if false, -1 if failed.

Example:

x = world_x_size();
· Explanation: world_x_size finds the game world X size and x is then set equal to it.

· world_y_size – works the same as world_x_size (above), except that it finds the game world Y size.

back to index
Map Visibility

· add_reveal_point
Definition:

Adds points on the map that are revealed to a player.

Syntax:

int add_reveal_point(int who, int x, int y, int dist_radius);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. x – game world X position

3. y – game world Y position

4. dist_radius – game world distance radius (in tile units)

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

add_reveal_point(1, 34, 43, 15);
· Explanation: add_reveal_point makes the game world coordinate 34, 43 visible to nation 1 for a distance of 15 tiles outwards from that location.

Similar Functions: (click to go)


set_explored
· clear_reveal_points
Definition:

Clears any reveal points given to a player.

Syntax:

int clear_reveal_points(int who);
Parameters:

1.   ( who – a nation index 1-8, based on nation color

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

clear_reveal_points(3);
· Explanation: clear_reveal_points clears any reveal points given to nation 3.

· set_explored – works the same as add_reveal_point (More), except it makes points on the map explored instead of revealed.
· set_seen
Definition:

Sets a building seen for a player.

Syntax:

int set_seen( int who, int whose_build, int build_o);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. ( whose_build – a nation index 1-8, based on nation color

3. build_o – a building ID

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

set_seen(3, 8, 2033);
· Explanation: set_seen sets nation 8’s building with the ID of 2033 seen for nation 3.

· show_all_map_disable
Definition:

Disables a nation from seeing all of the map.

Syntax:

int show_all_map_disable(  int who);
Parameters:

1.   ( who – a nation index 1-8, based on nation color

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

show_all_map_disable(5);
· Explanation: show_all_map_disable disables nation 3 from seeing all of the map.

· show_all_map_enable – works the same as show_all_map_disable (above), except it enables a nation to see all of the map.

back to index
Market

· buy_good
Definition:

Forces a player to buy 100 of a resource.

Syntax:

int buy_good( int who, string res_type);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. ( res_type – a resource name

Returns:
1 if true or success, 0 if false, -1 if failed.


Example:



buy_good(6, “Food”);
· Explanation: buy_good forces nation 6 to buy 100 Food.

Similar Functions: (click on to go)


sell_good
· can_buy_sell
Definition:

Checks if a nation can buy and sell resources at the market.
Syntax:

int can_buy_sell( int who);
Parameters:
1. ( who – a nation index 1-8, based on nation color

Returns:

1 if true or success, 0 if false, -1 if failed.


Example:


can_buy_sell(3);
· Explanation: can_buy_sell checks if nation 3 can buy and sell resources at the market.

· find_buy_price
Definition:

Finds the buy price of a resource for a player.

Syntax:

int find_buy_price( int who, string res_type);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. ( res_type – a resource name

Returns:
The buy price of the specified resource for the specified player if true or success, 0 if false, -1 if failed.


Example:


food_buy_price = find_buy_price(7, “Food”);
· Explanation: find_buy_price finds the buy price of Food for nation 7.  Then food_buy_price is set equal to that value.

· find_sell_price – works the same as find_buy_price (above), except instead it finds the sell price of a resource for a nation.

· give_good
Definition:

Gives a nation a specified amount of a resource.


Syntax:


int give_good( int who, string res_type, int num);

Parameters:
1. ( who – a nation index 1-8, based on nation color

2. ( res_type – a resource name

3. num – an integer value

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

give_good(2, “Knowledge”, 200);
· Explanation: give_good gives nation 2 200 Knowledge.

Similar Functions: (click on to go)


take_good
· sell_good – works the opposite of buy_good (More).  Forces a nation to sell 100 of a resource.

· set_base_rate

Definition:

Sets a player’s base resource rate.

Syntax:

int set_base_rate( int who, string res_type, int num);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. ( res_type – a resource name

3. num – an integer value

Returns:

1 if true or success, 0 if false, -1 if failed

Example:

set_base_rate(8, “Food”, 150);
· Explanation: set_base_rate sets nation 8’s base Food income rate to 150.

· set_good

Definition:

Sets a player’s resource level.

Syntax:

int set_good( int who, string res_type, int num);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. ( res_type – a resource name

3. num – an integer value

Returns:

1 if true or success, 0 if false, -1 if failed

Example:

set_good(1, “Timber”, 100);
· Explanation: set_good sets nation 1’s Food resource level to 100.

· take_good – works the same as give_good (More), except instead it takes away an amount of a resource from a nation.

back to index
Messages

· clear_game_msg
Definition:

Clears current game messages.

Syntax:

void clear_game_msg();
Parameters:

None

Returns:

Nothing (0 if used in an expression).

Example:

clear_game_msg();
· clear_msg
Definition:

Clears all current messages.

Syntax:


void clear_msg();
Parameters:


None

Returns:

Nothing (0 if used in an expression).

Example:

clear_msg();
· print_game_msg
Definition:
Prints a game message at the normal game message queue at left of the screen.  Messages disappear after awhile.

Syntax:

void print_game_msg( string message);
Parameters:

1.   message – a text message

Returns:

Nothing (0 if used in an expression).

Example:

print_game_msg(“You are under attack!”);
· Explanation: print_game_msg prints the message “You are under attack” at the normal game message queue at the left of the screen.  Message will disappear after awhile.

· print_msg
Definition:
Prints a message at the top center of the screen.  Messages stay there until cleared.

Syntax:

void print_msg( string message);
Parameters:

1.   message – a text message

Returns:

Nothing (0 if used in an expression).

Example:

print_msg(“You are under attack!”);
· Explanation: print_msg prints the message “You are under attack” at top center of the screen.  Message stay there until cleared.

· set_game_msg_color
Definition:

Sets what color game messages are.  Default is white.  

Syntax:

void set_game_msg_color( string color);
Parameters:
1.  color – color name (white, black, cyan, pink, blue, yellow, green, red, orange, light blue, brown, light gray, gray, dark gray, aqua)


Returns:


Nothing (0 if used in an expression).


Example:


set_game_msg_color(“RED”);
· Explanation: set_game_msg_color sets the game messages to be the color red.

· set_game_msg_time
Definition:
Sets the time that game messages will stay on the screen.  Default is six seconds. 

Syntax:

void set_game_msg_time( int seconds);
Parameters:

1.  seconds – time in seconds, -1 for infinite

Returns:

Nothing (0 if used in an expression).

Example:

set_game_msg_time(8);
· Explanation: set_game_msg_time sets the time that game messages will stay on the screen to eight seconds.

· set_msg_time
Definition:
Sets the time that messages will stay on the screen.  Default is six seconds. 

Syntax:

void set_msg_time( int seconds);
Parameters:

1.  seconds – time in seconds, -1 for infinite

Returns:

Nothing (0 if used in an expression).

Example:

set_msg_time(8);
· Explanation: set_msg_time sets the time that messages will stay on the screen to eight seconds.

back to index
Messages, Help

· set_feedback_msg
Definition:
Sets the feedback message at the top center of the screen.  This message clears itself.


Syntax:


int set_feedback_msg( string message);

Parameters:
1. message – text to be displayed

Returns:

1 if true or success, 0 if false, - 1 if false. 

Example:

set_feedback_msg(“Don’t do that!”);
· Explanation: set_feedback_msg sends a feedback message at the top center of the screen saying “Don’t do that!”

Similar Functions: (click on to go)


set_instruction_msg
· set_instruction_msg – works the same as set_feedback_msg (above).

· use_advanced_menu

Definition:

Turns on the advanced menu.

Syntax:

void use_advanced_menu();
Parameters:

None

Returns:

nothing (0 if used in an expression)

Example:

use_advanced_menu();
· use_basic_menu – works the same as use_advanced_menu (More), except it turns on the basic menu.

back to index
Messages, Popup Dialogs

· popup_choice
Definition:

Pops up a dialog with two buttons to choose.

Syntax:
int popup_choice( string message_text, string message_accept, string message_reject);

Parameters:
1. message_text – text to be displayed in popup dialog

2. message_accept – text to be displayed on button on the bottom left of popup dialog

3. message_reject – text to be displayed on button on the bottom right of popup dialog

Returns:

1 if message_accept is chosen, 0 if message_reject is chosen, -1 if failed.

Example:


choice = popup_choice(“Do you want to ally?”, “Yes”, “No”);
· Explanation: popup_choice pops up a dialog saying “Do you want to ally?”, with two choice boxes underneath, one saying “Yes”, and the other saying “No”.  If “Yes” is picked, choice is equal to 1.  If “No” is picked, choice is equal to 0.

· popup_dialog
Definition:

Pops up a dialog box with an okay button and pauses the game.

Syntax:

int popup_dialog(string message_text);
Parameters:

1. message_text – text to be displayed


Returns:


1 if true or success, 0 if false, -1 if failed.


Example:


popup_dialog(“This means war!”);
· Explanation: popup_dialog pops up a dialog saying “This means war” with an okay button at the bottom.  Game is paused until okay button is clicked.

back to index
Messages, Resource Warning

· build_placement_warning
Definition:

Triggered if the player tries to build  on an invalid site.

Syntax:


int build_placement_warning();

Parameters:


None


Returns:


1 if true or success, 0 if false, -1 if failed.


Example:


build_placement_warning();

Similar Functions: (click on to go)

city_cap_warning, commerce_cap_warning, pop_cap_warning, researching_warning, resource_warning, tech_warning
· city_cap_warning – works like build_placement_warning (above), except it is triggered if a player tries to build a city when they are city capped.

· commerce_cap_warning – works like build_placement_warning (More), except it is triggered if a player is at the resource cap for any resource.
· pop_cap_warning – works like build_placement_warning (More), except it is triggered if a player is at the population cap.

· researching_warning – works like build_placement_warning (More), except it is triggered if a player tries to research a technology that is it already researching at another building.


· resource_cap_warning
Definition:
Triggered if the player has reached the commerce cap in a specific resource.

Syntax:


int resource_cap_warning( int who, string res_type);

Parameters:
1. ( who – a nation index 1-8, based on nation color

2. ( res_type – a resource type name


Returns:


1 if true or success, 0 if false, -1 if failed.


Example:


resource_cap_warning(6, “Food”);


Triggered if nation 6 is at his resource cap in Food.

· resource_warning – works like build_placement_warning (More), except it is triggered if a player tries to build/research something but does not have the resources to pay for it.

· tech_warning – works like build_placement_warning (More), except it is triggered if a player tries to build/research something but does not have the required technology for it.

back to index
Mouse Over Objects

· get_object_at_mouse
Definition:

Triggered if a player has an object at mouse location.

Syntax:

int get_object_at_mouse( int who);
Parameters:

1.   ( who – a nation index 1-8, based on nation color

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

get_object_at_mouse(1);
· Explanation: get_object_at_mouse is triggered if nation 1 has an object at his mouse location.

· get_object_type_at_mouse
Definition:

Triggered if a player has an object type at mouse location.

Syntax:

int get_object_type_at_mouse( int who, string object_type);
Parameters:

1.   ( who – a nation index 1-8, based on nation color


2.   object_type – an object type name

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

get_object_type_at_mouse(1, “Atl-Atl”);
· Explanation: get_object_type_at_mouse is triggered if nation 1 has an Atl-Atl at his mouse location.

· get_resource_at_mouse
Definition:

Triggered if there is a rare resource at mouse location.

Syntax:

int get_resource_at_mouse();
Parameters:


None

Returns:

The resource ID if true or success, 0 if false, -1 if failed.

Example:

get_resource_at_mouse();
· is_mouseover_forest
Definition:

Triggered if the player’s mouse is currently over a forest.

Syntax:

int is_mouseover_forest();
Parameters:

None

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

is_mouseover_forest();
Similar Functions: (click on to go)


is_mouseover_mountain, is_mouseover_oil, is_mouseover_river
· is_mouseover_mountain – works like is_mouseover_forest (above), except it is triggered if the player’s mouse is currently over a mountain.

· is_mouseover_oil – works like is_mouseover_forest (More), except it is triggered if the player’s mouse is currently over oil.

· is_mouseover_river – works like is_mouseover_forest (More), except it is triggered if the player’s mouse is currently over a river.

back to index
Mouse, Events

· get_mouse_game_x

Definition:

Gets the mouse game world X position.

Syntax:

int get_mouse_game_x();
Parameters:

None

Returns:

The mouse game world X position if true or success, 0 if false, -1 if failed.

Example:

x = get_mouse_game_x();
· Explanation: get_mouse_game_x finds the mouse game world X position and then x is set equal to it.

· get_mouse_game_y – works like get_mouse_game_x (More), except it gets the mouse game world Y position.
· get_mouse_screen_x

Definition:

Gets the mouse screen X position.

Syntax:

int get_mouse_screen_x();
Parameters:

None

Returns:
The mouse screen X position if true or success, 0 if false, -1 if failed.

Example:

x = get_mouse_screen_x();
· Explanation: get_mouse_screen_x finds the mouse screen X position and then x is set equal to it.
· get_mouse_screen_y – works like get_mouse_screen_x (More), except it gets the mouse screen Y position.

· is_game_mouse_near
Definition:

Finds if the mouse is near a game world location.

Syntax:

int is_game_mouse_near( int x, int y, int dist_radius);
Parameters:
1. x – game world X position

2. y – game world Y position

3. dist_radius – distance radius in game world tile units

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

is_game_mouse_near(33, 48, 15);
· Explanation: is_game_mouse_near finds if the mouse is within 15 tiles radius of game world location 33, 48.

· mouse_down
Definition:

Triggered when the mouse is clicked.

Syntax:

int mouse_down();
Parameters:

None

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

mouse_down();
back to index
Nation & Player Stats

· age
Definition:

Finds the current age of a player.

Syntax:

int age( int who);
Parameters:

1.   ( who – a nation index 1-8, based on nation color

Returns:

The age (numbered 1-8) of the player if true or success, 0 if false, -1 if failed. (
Example:

player_age = age(8);
· Explanation: age finds the current age of nation 8 and then player_age is set equal to it.

· gather_rate
Definition:

Finds the gather rate of a player for a resource.


Syntax:


int gather_rate( int who, string res_type);

Parameters:
1. ( who – a nation index 1-8, based on nation color

2. ( res_type – a resource type name

Returns:
The gather rate of a resource for the player if true or success, 0 if false, -1 if failed.

Example:

food_rate = gather_rate(3, “Food”);
· Explanation: gather_rate finds the gather rate of Food for nation 3 and then food_rate is set equal to it.

· get_starting_loc_x
Definition:

Finds the starting game world X position of a player.

Syntax:

int get_starting_loc_x( int who);
Parameters:

1.  ( who – a nation index 1-8, based on nation color

Returns:
The starting game world X position of a player if true or success, 0 if false, -1 if failed.

Example:

x = get_starting_loc_x(8);
· Explanation: get_starting_loc_x finds the starting game world X position for nation 8 and then x is set equal to it.
· get_starting_loc_y – works like get_starting_loc_x (More), except it finds the starting game world Y position of a player.


· get_starting_resources
Definition:

Finds the starting resources of a player.

Syntax:

int get_starting_resources( int who);
Parameters



1.   ( who – a nation index 1-8, based on nation color


Returns:


An integer value (associated with starting resource settings), 0 if false, -1 if failed. (

Example:


start_res = get_starting_resources(1);
· Explanation: get_starting_resources finds the starting resources of nation 1 and then start_res is set equal to that value.

· get_starting_town_size
Definition:

Finds the size of a player’s starting city.

Syntax:

int get_starting_town_size( int who);
Parameters:

1.   ( who – a nation index 1-8, based on nation color

Returns:

An integer value (see above) if true or success, 0 if false, -1 if false. ( 

Example:

start_size = get_starting_town_size(2);
· Explanation: get_starting_town_size finds the starting town size of nation 2 and then start_size is set equal to it.

· get_territory
Definition:

Finds the percentage of territory controlled by a player.

Syntax:

int get_territory( int who);
Parameters:

1.   ( who – a nation index 1-8, based on nation color

Returns:
An integer value representing the percentage of territory controlled by a player if true or success, 0 if false, -1 if failed.


Example:


territory = get_territory(3);
· Explanation: get_territory finds the percentage of territory controlled by nation 3 and then territory is set equal to it.

· get_wonder_points
Definition:

Finds the number of wonder points a player has.

Syntax:

int get_wonder_points( int who);
Parameters:

1.   ( who – a nation index 1-8, based on nation color

Returns:
An integer value representing the number of wonder points a player has if true or success, 0 if false, -1 if failed.


Example:


wonder_points = get_wonder_points(3);
· Explanation: get_wonder_points finds the number of wonder points nation 3 has and then wonder_points is set equal to it.

· is_defeated
Definition:

Finds if a player has been defeated.

Syntax:

int is_defeated( int who);
Parameters:

1.  ( who – a nation index 1-8, based on nation color

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

is_defeated(3);
· Explanation: is_defeated finds if nation 3 has been defeated.
· max_military_unit_type
Definition:
Finds out what military unit type a player has the most of (land units only).

Syntax:

string max_military_unit_type( int who);
Parameters:

1.  ( who – a nation index 1-8, based on nation color

Returns:
A string value (the unit type name) if true or success, 0 if used in an expression.

Example:

most_unit_type = max_military_unit_type(8);
· Explanation: max_military_unit finds out what military unit type nation 8 has the most of (land units only) and then most_unit_type is set equal to it.

· num_buildings
Definition:


Finds the number of buildings a player has.

Syntax:

int num_buildings( int who);
Parameters:

1.   ( who – a nation index 1-8, based on nation color

Returns:
An integer value representing the number of buildings a player has if true or success, 0 if false, -1 if failed.

Example:

build_count = num_buildings(3);
· Explanation: num_buildings finds the number of buildings nation 3 has and then build_count is set equal to that number.


Similar Functions: (click to go)



num_cities, num_civilian_buildings, 
num_military_buildings
· num_cities – works the same as num_buildings (above), except it finds only the number of cities a nation has.

· num_civilian_buildings – works the same as num_buildings (More), except it finds only the number of civilian buildings a nation has.

· num_civilian_units – works the same as num_units (More), except it finds only the number of civilian units a nation has.

· num_military_buildings – works the same as num_buildings (More), except it finds only the number of military buildings a nation has.

· num_military_units – works the same as num_units (More), except it finds only the number of military units a nation has.

· num_rare_resources_seen
Definition:

Finds how many rare resources a player has seen.

Syntax:

int num_rare_resources_seen( int who);
Parameters:

1.   ( who – a nation index 1-8, based on nation color

Returns:

An integer value representing the number of rare resources seen by a player if true or success, 0 if false, -1 if failed.

Example:

num_rare_resources_seen(3);
· Explanation: num_rare_resources_seen finds how many rare resources nation 3 has seen.

· num_type
Definition:

Finds the number of a type of unit or building a nation has.

Syntax:

int num_type( int who, string object_type);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. object_type – a building or unit ID

Returns:
The number of a type of unit or building a player has if true or success, 0 if false, -1 if failed.

Example:

num_flamethrowers = num_type(3, “Flamethrower”);
· Explanation: num_type finds the number of Flamethrowers nation 3 has and then num_flamethrowers is set equal to that value.

Similar Functions: (click to go)


num_type_upgrade, num_type_with_queued

· num_type_upgrade – works the same as num_type (above), except that it finds the number of a type of unit or building a nation has, and its upgrade.

· num_type_with_queued – works the same as num_type (above), except that it finds the number of a type of unit or building a nation has, and any of the type that are queued. 

· num_unit_category
Definition:
Finds how many units of a category a player has.


Syntax:


int num_unit_category( int who, string unit_cat);

Parameters:


1.   ( who – a nation index 1-8, based on nation color



2.   ( unit_cat – a unit category name (listed above)


Returns:
The number of units in a category that a player has if true or success, 0 if false, -1 if failed.


Example:


num_naval = num_unit_category(8, “Naval”);
· Explanation: num_unit_category finds out how many Naval units nation 8 has and then num_naval is set  equal to that number.

· num_units
Definition:

Finds the number of units a nation has.

Syntax:


int num_units( int who);
Parameters:

1.   ( who – a nation index 1-8, based on nation color

Returns:

The number of units a player has if true or success, 0 if false, -1 if failed.

Example:

units = num_units(7);
· Explanation: num_units finds the number of units nation 7 has and then units is set equal to that number.


Similar Functions: (click to go)



num_civilian_units, num_military_units, num_units_built, num_units_killed, num_units_lost
· num_units_built – works like num_units (above), except it finds only the number of units a nation has built.

· num_units_killed – works like num_units (More), except it finds only the number of units a nation has killed.

· num_units_lost – works like num_units (More), except it finds only the number of units a nation has lost.

· score
Definition:

Finds the score of a player.

Syntax:

int score( int who);
Parameters:

1.   ( who – a nation index 1-8, based on nation color

Returns:

The score of a player if true or success, 0 if false, -1 if failed.

Example:

player_one_score = score(1);
· Explanation: score finds the score of nation 1 and then player_one_score is set equal to that number.

back to index
Object Location

· any_object_at
Definition:

Finds out if any of a player’s objects are at a specific location.

Syntax:

int any_object_at( int who, int x, int y);
Parameters:

1.   ( who – a nation index 1-8, based on nation color


2.   x – game world X location

3. y – game world Y location

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

any_object_at(3, 87, 123);
· Explanation: any_object_at finds if nation 3 has any objects at game world location 87, 123.

· any_object_near
Definition:

Finds out if any of a player’s objects are near a specific location.

Syntax:

int any_object_near( int who, int num_objects, int x, int y, int dist_radius);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. num_objects – an integer value

3. x – game world X location

4. y – game world Y location

5. dist_radius – game world distance radius (in tile units)

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

any_object_near(3, 10, 87, 123, 15);
· Explanation: any_object_near finds if nation 3 has any 10 objects within 15 game world tiles of game world location 87, 123.

· any_object_near_build
Definition:

Finds out if any of a player’s objects are near a specific building.

Syntax:
int any_object_near_build( int who, int num_objects, int who_build, int build_o, int dist_radius);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. num_objects – an integer value

3. ( who_build – a nation index 1-8, based on nation color

4. build_o – a building ID

5. dist_radius – game world distance radius (in tile units)

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

any_object_near_build(3, 10, 2, 2022, 15);
· Explanation: any_object_near_build finds if nation 3 has any 10 objects within 15 game world tiles of nation 2’s building with the ID of 2022.

· is_object_at
Definition:

Finds if an object is at a specific location.

Syntax:

int is_object_at( int who, int build_o, int x, int y);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. object_o – a building or unit ID

3. x – game world X location

4. y – game world Y location

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

is_object_at(1, 25, 89, 120);
· Explanation: is_object_at finds if nation 1’s unit with the ID of 25 is at game world location 89, 120.

· object_near
Definition:

Finds if an object is near a specific location.

Syntax:

int object_near( int who, int object_o, int x, int y, int dist_radius);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. object_o – a building or unit ID

3. x – game world X location

4. y – game world Y location

5. dist_radius – game world distance radius (in tile units)

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

object_near(4, 21, 200, 200, 20);
· Explanation: object_near finds if nation 4’s unit with the ID of 21 is within 20 game world distance radius (in tile units) of game world location 200, 200.

· object_near_build
Definition:

Finds if an object is near a specific building.

Syntax:
int object_near_build( int who, int object_o, int who_build, int build_o, int dist_radius);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. object_o – a building or unit ID

3. ( who_build – a nation index 1-8, based on nation color

4. build_o – a building ID

5. dist_radius – game world distance radius (in tile units)

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

object_near_build(4, 21, 8, 2033, 20);
· Explanation: object_near_build finds if nation 4’s unit with the ID of 21 is within 20 game world distance radius (in tile units) of nation 8’s building with the ID of 2033.

· object_position_x
Definition:

Finds the game world X position of an object.

Syntax:

int object_position_x( int who, int object_o);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. object_o – a building or unit ID

Returns:

The game world X location of an object if true or success, 0 if false, -1 if failed.

Example:

x = object_position_x(3, 2122);
· Explanation: object_position_x finds the game world X location of nation 3’s building with the ID of 2122, and then x is set equal to that value.

· object_position_y – works the same as object_position_x (More), except it finds the game world Y position of an object.

· object_type
Definition:

Finds the type name of an object.

Syntax:

string object_type( int who, int object_o);
Parameters:

1.   ( who – a nation index 1-8, based on nation color


2.   object_o – a building or unit ID

Returns:

The type name of an object if true or success.

Example:

unit_name = object_type(3, 19);
· Explanation: object_type finds the type name of nation 3’s unit with the ID of 19 and then unit_name is set equal to that value.

· object_type_at
Definition:

Finds if a player has any object of a type at a specific location.

Syntax:

int object_type_at( int who, string object_type, int x, int y);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. object_type – an object type name

3. x – game world X location

4. y – game world Y location

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

object_type_at(4, “Citizen”, 38, 92);
· Explanation: object_type_at finds if nation 4 has any citizens at game world location 38, 92.

· object_type_near
Definition:
Finds if a player has a specific number of objects of a type near a specific location.

Syntax:
int object_type_near( int who, string object_type, int num_objects, int x, int y, int dist_radius);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. object_type – an object type name

3. num_objects – an integer value

4. x – game world X location

5. y – game world Y location

6. dist_radius – game world distance radius (in tile units)

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

object_type_near(4, “Citizen”, 30, 38, 92, 20);
· Explanation: object_type_near finds if nation 4 has 30 or more citizens within 20 game world distance radius (in tile units) of game world location 38, 92.

· object_type_near_build
Definition:
Finds if a player has a specific number of objects of a type near a specific building.

Syntax:
int object_type_near_build( int who, string object_type, int num_objects, int who_build, int build_o, int dist_radius);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. object_type – an object type name

3. num_objects – an integer value

4. ( who_build – a nation index 1-8, based on nation color

5. build_o – a building ID

6. dist_radius – game world distance radius (in tile units)

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

object_type_near_build(4, “Citizen”, 30, 8, 2011, 20);
· Explanation: object_type_near_build finds if nation 4 has 30 or more citizens within 20 game world distance radius (in tile units) of nation 8’s building with the ID of 2011.

· object_visible
Definition:

Finds if an object is visible to a player.

Syntax:

int object_visible( int who, int whose_obj, int object_o);
Parameters:

1.   ( who – a nation index 1-8, based on nation color


2.   ( whose_obj – a nation index 1-8, based on nation color

3. object_o – a building or unit ID

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

object_visible(1, 2, 2030);
· Explanation: object_visible finds if nation 1 can see nation 2’s building with the ID of 2030.

back to index
Objectives (Scenario)

· add_goal
Definition:

Adds a goal to the objectives dialog.

Syntax:

int add_goal( int who, string goal_id, string message);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. goal_id – scenario objective ID string

3. message – text to be displayed

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:
add_goal(1, “Capture Carthage”, “Capture Carthage from the ruthless Carthaginians.”);
· Explanation: add_goal adds the goal of “Capture Carthage from the ruthless Carthaginians” to nation 1’s objectives, and gives it the ID of “Capture Carthage.”

· clear_goals
Definition:

Clears all of a player’s goals.

Syntax:

int clear_goals( int who);
Parameters:

1.   ( who – a nation index 1-8, based on nation color

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

clear_goals(3);
· Explanation: Using clear_goals all of nations 3’s goals are cleared.

Similar Functions: (click on to go)


clear_objectives
· complete_goal
Definition:

Completes a goal for a player.

Syntax:

int complete_goal( int who, string goal_id);
Parameters:

1.   ( who – a nation index 1-8, based on nation color


2.   goal_id – scenario objective ID string


Returns:


1 if true or success, 0 if false, -1 if failed.


Example:


complete_goal(1, “Capture Carthage”);
· Explanation: Using complete_goal,  nation 1’s goal with the ID “Capture Carthage” is completed.

· goal_dialog_shown
Definition:

Finds if the goal dialog has been shown since the scenario started.

Syntax:

int goal_dialog_shown();
Parameters:

None

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

goal_dialog_shown();
· remove_goal
Definition:

Removes a goal from the objectives dialog.

Syntax:

int remove_goal( int who, string goal_id);
Parameters:

1.   ( who – a nation index 1-8, based on nation color


2.   goal_id – scenario objective goal ID

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

remove_goal(1, “Capture Carthage”);
· Explanation: remove_goal removes nation 1’s goal with the ID of “Capture Carthage.”

· reset_goal
Definition:

Resets a goal from being completed.

Syntax:

int reset_goal( int who, string goal_id);
Parameters:

1.   ( who – a nation index 1-8, based on nation color


2.   goal_id – scenario objective goal ID

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

reset_goal(1, “Capture Carthage”);
· Explanation: reset_goal resets nation 1’s goal with the ID of “Capture Carthage” so that it is active again.

· show_goal_dialog
Definition:

Shows the objectives dialog (goal dialog).

Syntax:

int show_goal_dialog();
Parameters:

None

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

show_goal_dialog();
back to index
Objectives(Temporary)

· add_objective
Definition:
Adds a scenario objective that is displayed on the left of the screen with a checkbox beside it.

Syntax:

int add_objective( string message, string obj_id, string sound);
Parameters:
1. message – text to be displayed

2. obj_id – temporary objective ID string

3. sound – sound filename (.wav extension)

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

add_objective(“Capture Shanghai”, “capture capital”, “barracks.wav”);
· Explanation: add_objective adds the objective “Capture Shanghai” to the left hand side of the screen in a block box with a check box beside it.  The objective ID is “capture capital,” and barracks.wav is played when the objective is activated.

· add_objective_text
Definition:
Adds a scenario objective that is displayed on the left of the screen (without a checkbox beside it).

Syntax:

int add_objective_text( string message, string obj_id, string sound);
Parameters:
1. message – text to be displayed

2. obj_id – temporary objective ID string

3. sound – sound filename (.wav extension)

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:
add_objective_text(“Capture Shanghai”, “capture capital”, “barracks.wav”);
· Explanation: add_objective_text ads the objective “Capture Shanghai” to the left hand side of the screen in a block box without a check box beside it.  The objective ID is “capture capital,” and barracks.wav is played when the objective is activated.

· change_objective_text
Definition:
Changes the text displayed in a scenario objective that is displayed on the left of the screen.


Syntax:


int change_objective_text( string obj_id, string message);

Parameters:


1.   obj_id – temporary objective ID string



2.   message – text to be displayed


Returns:


1 if true or success, 0 if false, -1 if failed.


Example:


change_objective_text(“capture capital”, “Capture Beijing”);
· Explanation: change_objective_text changes the objective with the ID “capture capital” to say “Capture Beijing.”

· clear_objectives – works like clear_goals (More), except it clears scenario objectives.

· objective_complete
Definition:

Checks an objective as complete.

Syntax:

int objective_complete( string obj_id);
Parameters:

1.   obj_id – temporary objective ID string

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

objective_complete(“capture capital”);
· Explanation: objective_complete checks the objective “capture capital” as complete.

· play_objective_sound
Definition:

Plays the sound associated with an objective.

Syntax:

int play_objective_sound( string obj_id);
Parameters:

1.   obj_id – temporary objective ID string

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

play_objective_sound(“capture capital”);
· Explanation: play_objective_sound plays the sound associated with the objective with the temporary ID of “capture capital.”

· remove_objective
Definition:

Removes an objective.

Syntax:

int remove_objective( string obj_id);
Parameters:


1.   obj_id – temporary objective ID string

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

remove_objective(“capture capital”);
· Explanation: remove_objective removes the objective “capture capital.”

· set_objective_sound
Definition:

Sets the sound associated with an objective.

Syntax:

int set_objective_sound( string obj_id, string sound);
Parameters:

1.   obj_id – temporary objective ID string


2.   sound – a sound filename (.wav extension)

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

set_objective_sound(“capture capital”, “stable.wav”);
· Explanation: set_objective_sound sets the sound associated with the objective “capture capital” to be stable.wav.

back to index


Ping

· clear_pings
Definition:

Clears all pings on the map.

Syntax:

int clear_pings( int who);
Parameters:

1.   ( who – a nation index 1-8, based on nation color

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

clear_pings(3);
· ping


Definition:

Pings a specific location on the map from one player to another.

Syntax:

int ping( int who_to, int who_from, int x, int y);
Parameters:
1. ( who_to – a nation index 1-8, based on nation color

2. ( who_from – a nation index 1-8, based on nation color

3. x – game world X position

4. y – game world Y position

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

ping(2, 8, 25, 125);
· Explanation: ping pings from nation 8 to nation 2 at game world location 25, 125.

· ping_all
Definition:

Pings a specific location on the map from one player to all players.

Syntax:

int ping_all( int who, int x, int y);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. x – game world X position

3. y – game world Y position

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

ping_all(8, 25, 125);
· Explanation: ping_all pings from nation 8 to all players at game world location 25, 125.
· ping_constant – works the same as ping_all (above), except there is no timeout on the ping.

· ping_object
Definition:

Pings a specific object from one player to another.

Syntax:

int ping_object( int who_to, int who_from, int whose_unit, int object_o);
Parameters:
1. ( who_to – a nation index 1-8, based on nation color

2. ( who_from – a nation index 1-8, based on nation color

3. ( whose_unit – a nation index 1-8, based on nation color

4. object_o – a building or unit ID

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

ping_object(2, 1, 3, 15);
· Explanation: ping_object nation 1 pings to nation 2 the location of nation 3’s unit with the ID of 15.

· ping_object_all
Definition:

Pings a specific object from one player to all players.

Syntax:

int ping_object_all( int who_from, int whose_unit, int object_o);
Parameters:
1. ( who_from – a nation index 1-8, based on nation color

2. ( whose_unit – a nation index 1-8, based on nation color

3. object_o – a building or unit ID

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

ping_object_all( 2, 3, 15);
· Explanation: ping_object_all nation 2 pings to all players the location of nation 3’s unit with the ID of 15.

back to index

Population

· population
Definition:

Finds the total population of a player.

Syntax:

int population( int who);

Parameters:

1. who – a nation index 1-8, based on nation color

Returns:

The total population of a player if true or success, 0 if false, -1 if failed.

Example:

population_level = population(3);


Sets population_level equal to the total population of nation 3.

· population_cap
Definition:

Finds the population cap of a player.

Syntax:

int population_cap( int who);
Parameters:

1. ( who – a nation index 1-8, based on nation color

Returns:

The population cap of a player if true or success, 0 if false, -1 if failed.

Example:

pop_cap = population_cap(7);
· Explanation: population_cap finds the population cap of nation 7 and sets pop_cap equal to it.

· set_population_cap
Definition:

Sets the population cap of a player.

Syntax:

int set_population_cap( int who, int num);
Parameters:

1.   ( who – a nation index 1-8, based on nation color

2.   num – an integer value

Returns:

The new level if true or success, 0 if false, -1 if failed.

Example:

set_population_cap(2, 200);
· Explanation: set_population_cap sets the population cap of nation 2 equal to 200.

back to index
Screenshot

· get_console_player
Definition:

Returns the ID of the player controlled at this machine.

Syntax:

int get_console_player();
Parameters:

None

Returns:
Returns the ID of the player controlled at this machine if true or success, 0 if false, -1 if failed.

Example:

get_console_player();
· take_screenshot
Definition:


Takes a screenshot of current view and saves it as a specified name.

Syntax:

int take_screenshot( string filename);
Parameters:

1. filename – the name of the file

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

take_screenshot(“City”);
· Explanation: take_screenshot takes a screenshot of the current player view and saves it as the given name in the screenshot folder of the game directory.

back to index
Search Functions

· find_all_military – works like find_unit (More), except that it only finds military units (both garrisoned and ungarrisoned) and only takes a who as a parameter.
· find_all_military_category – works just like find_military_category (More), except it finds both garrisoned and ungarrisoned military units of a category.
· find_all_unit – works like find_unit (More), except that it finds all units, both garrisoned and ungarrisoned.
· find_build
Definition:
Finds an ID of one of a player’s buildings of a type.  Multiple calls will cycle through a player’s buildings of a type.


Syntax:


int find_build( int who, string build_type);

Parameters:
1. ( who – a nation index 1-8, based on nation color

2. build_type – a building type name.  Pass in a blank string to search all unit types.


Returns:


A building ID if true or success, 0 if false, -1 if failed.


Example:


building_id = find_build(3, “Stable”);
· Explanation: find_build finds the ID of a Stable of nation 3 and building_id is set equal to the ID number.

Similar Functions: (click on to go)


find_civilian_build, find_inactive_build, find_military_build
· find_build_at_city
Definition:
Finds an ID of one of a player’s buildings of a type at a specific city.  Multiple calls will cycle through a player’s buildings of a type at a specific city.


Syntax:
int find_build_at_city( int who, string city_name, string build_type int bool_count_inactive);

Parameters:
1. ( who – a nation index 1-8, based on nation color

2. city_name – a city name

3. build_type – a building type name.  Pass in a blank string to search all building types.

4. bool_count_inactive – true or false (1 or 0), whether to count buildings under construction or not


Returns:


A building ID if true or success, 0 if false, -1 if failed.


Example:


building_id = find_build_at_city(3, “Moscow”, “Farm”, 1);
· Explanation: find_build_at_city finds the ID of a Farm of nation 3 at the city of Moscow, even an un-build Farm, and sets building_id equal to the ID number.

· find_capital
Definition:

Finds the name of the capital of a player.

Syntax:

string find_capital( int who);
Parameters:

1.   ( who – a nation index 1-8, based on nation color

Returns:

A capital name if true or success, a blank string or 0 if false or failed.

Example:

capital_name = find_capital(4);
· Explanation: find_capital finds the name of the capital of nation 4 and capital_name is set equal to it.

· find_civilian_build – works like find_build (More), except that it only finds civilian buildings and only takes a who as a parameter.

· find_idle_all_military – works like find_unit (More), except that it only finds idle military units (both garrisoned and ungarrisoned) and only takes a who as a parameter.
· find_idle_caravan – works like find_unit (More), except that it only finds caravans that are not garrisoned and only takes a who as a parameter.

· find_idle_citizen – works like find_unit (More), except that it only finds idle citizens that are not garrisoned and only takes a who as a parameter.

· find_idle_inside_military – works like find_unit (More), except that it only finds idle military units that are garrisoned and only takes a who as a parameter.

· find_idle_military – works like find_unit (More), except that it only finds idle military units that are not garrisoned and only takes a who as a parameter.

· find_inactive_build – works like find_build (More), except that it only finds buildings that are not fully constructed and only takes a who as a parameter.
· find_inside_military – works like find_unit (More), except that it only finds military units that are garrisoned and only takes a who as a parameter.

· find_inside_military_category – works just like find_military_category (More), except it finds only military units of a category that are garrisoned.

· find_inside_unit – works like find_unit (More), except that it only finds units that are garrisoned.

· find_ military – works like find_unit (More), except that it only finds military units that are not garrisoned. 

· find_military_build – works like find_build (More), except that it only finds military buildings and only takes a who as a parameter.

· find_military_category
Definition:
Finds an ID of one of a player’s military units of a category that is not garrisoned.  Multiple calls will cycle through a player’s military units of a category that are not garrisoned.


Syntax:


int find_military_category( int who, string unit_cat);

Parameters:


1.   ( who – a nation index 1-8, based on nation color



2.   ( unit_cat – a unit category name


Returns:


A unit ID if true or success, 0 if false, -1 if failed.


Example:


military_id = find_military_category(3, “Mounted”);
· Explanation: find_military_category finds the ID of a Mounted unit of nation 3 that is not garrisoned and military_id is set equal to the ID number.


Similar Functions: (click on to go)



find_all_military_category, find_inside_military_category
· find_nation
Definition:

Finds the nation name of a player.

Syntax:

string find_nation( int who);
Parameters:

1.   ( who – a nation index 1-8, based on nation color

Returns:

A nation name if true or success, a blank string or 0 if false or failed.

Example:

player_nation = find_nation(1);
· Explanation: find_nation finds the nation name of nation 1.  Then player_nation is set equal to it.

· find_unit
Definition:
Finds the unit ID of one of a player’s units of a type that is not garrisoned.  Multiple calls cycles through all of a player’s units of a type that are not garrisoned. 


Syntax:


int find_unit( int who, string unit_type);

Parameters:
1. ( who – a nation index 1-8, based on nation color

2. unit_type – a unit type name.  Pass in a blank string to search all unit types.


Returns:


A unit ID if true or success, 0 if false, -1 if failed.


Example:


unit_id = find_unit(8, “Knight”);
· Explanation: find_unit finds the unit ID of a Knight of nation 8 and unit_id is set equal to it.



Similar Functions: (click on to go)



find_all_military, find_all_unit, find_idle_all_military, find_idle_caravan, find_idle_citizen, 




find_idle inside_military, find_idle_military, find_inside_military, find_inside_unit, find_military
· set_nation_name
Definition:

Changes the name of a nation.

Syntax:

int set_nation_name( string old_nation_name, string new_nation_name);
Parameters:
1. old_nation_name – current name of the nation that is being changed

2. new_nation_name – name to change the nation’s name to

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

set_nation_name(“Romans”, “Italians”);
· Explanation: set_nation_name changes the nation name Romans to Italians.

back to index
Selection

· any_object_selected
Definition:

Finds if the player has an object of a player’s selected.

Syntax:


int any_object_selected( int who);
Parameters:

1.   ( who – a nation index 1-8, based on nation color

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

any_object_selected(1);
· Explanation: Using any_object_selected, it is found if the player has any of nation 1’s objects selected.

· clear_selection
Definition:

Clears selection of whatever is selected.

Syntax:

int clear_selection( int who);
Parameters:

1.   ( who – a nation index 1-8, based on nation color

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

clear_selection(3);
· Explanation: clears_selection clears selection of whatever nation 3 has selected.

· find_selected_id
Definition:

Finds the ID of the selected object.

Syntax:

int find_selected_id( int who);
Parameters:

1.   ( who – a nation index 1-8, based on nation color

Returns:

The selected object ID if true or success, 0 if false, -1 if failed.

Example:

id = find_selected_id(3);
· Explanation: find_selected_id finds the ID of the object selected by nation 3 and sets id equal to it.

· hotkey_selection_disable
Definition:

Disallows the selection of things using hotkeys.

Syntax:

int hotkey_selection_disable();
Parameters:

None

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

hotkey_selection_disable();
· hotkey_selection_enable – works the same as hotkey_selection_disable (above), except it enables the selection of things using hotkeys.

· mouse_selection_disable
Definition:

Disallows the selection of things using the mouse.

Syntax:

int mouse_selection_disable();
Parameters:

None

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

mouse_selection_disable ();
· mouse_selection_enable – works the same as mouse_selection_disable (above), except it enables the selection of things using the mouse.

· num_objects_selected

Definition:

Finds the number of objects a player has selected.

Syntax:

int num_objects_selected( int who);
Parameters:

1.   ( who – a nation index 1-8, based on nation color

Returns:

The number of objects selected if true or success, 0 if false, -1 if failed.

Example:

num = num_objects_selected(3);
· Explanation: num_objects_selected finds the number of objects nation 3 has selected and num is set equal to that value.

· object_selected
Definition:

Finds if a player has a specific object selected.

Syntax:

int object_selected( int who, int object_o);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. object_o – a building or unit ID

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

object_selected(7, 2030);
· Explanation: object_selected finds if nation 7 has the building with the ID of 2030 selected.

· object_type_selected
Definition:

Finds if a player has an object type selected.

Syntax:

int object_type_selected( int who, string object_type);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. object_type – a building or unit type name

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

object_type_selected(7, “Stable”);
· Explanation: object_type_selected finds if nation 7 has a Stable selected.

back to index
Team Change

· switch_building_type 

Definition:

Gives all of one player’s buildings of a certain type (or upgrade from) to another player.  Pass in a blank string to switch all their buildings.

Syntax: 

int switch_building_type( int who_receiver, int who_giver, string build_type);

Parameters: 


1. ( who_receiver - a nation index 1-8, based on nation color


  
2. ( who_giver - a nation index 1-8, based on nation color


  
3. build_type - a building type name

Returns:  

A positive number equal to the number of buildings swapped if true or success, 0 if false, -1 if failed.

Examples:  

num_buildings_switched = switch_building_type(1, 2, “Barracks”);
· Explanation:  switch_building_type gives all of nation 2’s barracks to nation 1 and num_buildings_switched is set equal to the number of buildings switched.
· switch_teams
Definition:

Switches a unit or building from one player’s control to another player’s control.

Syntax: 

int switch_teams( int who_receiver, int who_giver, int object_o);

Parameters: 


1. ( who_receiver - a nation index 1-8, based on nation color


  
2. ( who_giver - a nation index 1-8, based on nation color


  
3. object_o - a building or unit ID

Returns:  

The new unit or building’s ID if true or success, 0 if false, -1 if failed.

Example:  

new_unit_id = switch_teams(1, 2, 15);
· Explanation: switch_teams switches nation 2’s unit with the ID of 15 to nation 1’s control and sets new_unit_id equal to the new unit ID of the unit switched to nation 1.

· switch_unit_type 

Definition:

Gives all of one player’s units of a certain type (or upgrade from) to another player.  Pass in a blank string to switch all their units.

Syntax: 

int switch_unit_type( int who_receiver, int who_giver, string unit_type);

Parameters: 


1. ( who_receiver - a nation index 1-8, based on nation color


  
2. ( who_giver - a nation index 1-8, based on nation color


  
3. unit_type - a unit type name

Returns:  

A positive number equal to the number of units swapped if true or success, 0 if false, -1 if failed.

Examples:  

num_units_switched = switch_building_type(1, 2, “Umpakati”);
· Explanation: switch_building_type gives all of nation 2’s Umpakatis to nation 1 and sets num_buildings_switched equal to the number of units switched.

back to index
Techs & Ages

· can_pay_cost
Definition:

Tests the availability of current resources to pay for a certain thing.

Syntax:

int can_pay_cost( int who, string type);
Parameters:
1. ( who – nation index

2. type – any game type name

Returns:



1 if true or success, 0 if false, -1 if failed.


Example:


can_pay_cost(2, “Woodcutter’s Camp”);
· Explanation: can_pay_cost finds if nation 2 has the resources to pay for a Woodcutter’s Camp.

· gain_next_age
Definition:

Advances a player to the next age.

Syntax:



int gain_next_age( int who);

Parameters:


1.   ( who – a nation index 1-8, based on nation color


Returns:


1 if true or success, 0 if false, -1 if failed.


Example:


gain_next_age(2);
· Explanation: gain_next_ae advances nation 2 to the next age.

Similar Functions: (click on to go)


lose_current_age
· gain_tech
Definition:
Gives a player a technology.  Can pass in the actual technology name, or pass in Military, Civics, Commerce, or Science to gain the next technology in that branch.

Syntax:


int gain_tech( int who, string tech_type);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. tech_type – a technology type name

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

gain_tech(3, “Written Word”);
· Explanation: gain_tech gives nation 3 Written Word technology.

Similar Functions: (click on to go)


lose_tech
· gain_upgrade
Definition:
Gives a player an upgrade (need all prerequisites).

Syntax:


int gain_upgrade( int who, string type);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. type – any game type name

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

gain_upgrade(3, “Nuclear ICBM”);
· Explanation: gain_upgrade gives nation 3 the Nuclear ICBM upgrade.

Similar Functions: (click on to go)

lose_upgrade
· get_current_age
Definition:



Finds a player’s current age.


Syntax:


int get_current_age( int who);

Parameters:


1.   ( who – a nation index 1-8, based on nation color


Returns:
( An integer value representing the current age of a player (see list above) if true or success, 0 if false, -1 if failed.


Example:


player_age = get_current_age(3);
· Explanation: get_current_age finds the current age of nation 3 and player_age is set equal to it.


Similar Functions: (click on to go)



get_ending_age, get_starting_age
· get_ending_age – works the same as get_current_age (above), except it finds the ending age of the game.

· get_starting_age – works the same as get_current_age (More), except it finds the starting age of the game.

· get_techs_per_age
Definition:
Finds the number of technologies needed to be researched to advance to the next age.


Syntax:


int get_techs_per_age();

Parameters:


None


Returns:
The number of technologies needed to be researched to advance to the next age if true or success, 0 if false, -1 if failed.


Example:




techs_needed = get_techs_per_age();
· Explanation: get_techs_per_age finds the number of technologies needed to be researched to advance to the next age and techs_needed is set equal to it.

· have_tech
Definition:

Finds if a player has a certain technology.

Syntax:

int have_tech( int who, string tech_type);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. tech_type – a technology type name

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

have_tech(3, “Written Word”);
· Explanation: have_tech is used to find if nation 3 has Written Word researched.

· lose_current_age – works the same as gain_next_age (More), except instead it makes a nation lose an age.
· lose_tech – works the same as gain_tech (More), except instead it makes a nation lose a technology.

· lose_upgrade – works the same as gain_upgrade (More), except instead it makes a nation lose an upgrade.
· research_tech_with_cost
Definition:

Researches a specific technology once it can be paid for.

Syntax:

int research_tech_with_cost( int who, string tech_type);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. tech_type – a technology type name

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

research_tech_with_cost(4, “Barter”);
· Explanation: research_tech_with_cost makes nation 4 research the Barter technology once he has enough to pay for it.

· researching_tech
Definition:

Finds if a player is researching a specific technology.

Syntax:

int researching_tech( int who, string tech_type);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. tech_type – a technology type name

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

researching_tech(3, “The Art of War”);
· Explanation: researching_tech finds if nation 3 is researching the technology The Art of War.

· researching_tech_at
Definition:
Finds if a player is researching a specific technology at a specific building.

Syntax:

int researching_tech_at( int who, int object_o, string tech_type);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. object_o – a building or unit ID

3. tech_type – a technology type name

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

researching_tech_at(3, 2003, “The Art of War”);
· Explanation: researching_tech_at finds if nation 3 is researching the technology The Art of War at the building with the ID 2003.

back to index
Time

· time – works the same as time_min (below).

· time_min
Definition:

Finds the current game time in minutes.

Syntax:

int time_min();
Parameters:

None

Returns:

The game time in minutes if true or success, 0 if false, -1 if failed.

Example:

game_time_min = time_min();
· Explanation: time_min finds the game time in minutes. Then game_time_min is set equal to that value.

· time_sec – works the same as time_sec (above), except it finds the game time in seconds.

back to index
Timers

· get_time_limit
Definition:

Finds the game time limit.

Syntax:

int get_time_limit();
Parameters:

None

Returns:

The game time limit in minutes if true or success, 0 if false, -1 if failed.

Example:

time_limit = get_time_limit();
· Explanation: get_time_limit finds the game time limit in minutes and time_limit is set equal to that number.

· set_time_limit

Definition:

Sets the game time limit (only if game is already a time limit game).

Syntax:

int set_time_limit( int seconds);
Parameters:


1.   seconds – time in minutes to set game time limit to


Returns:


1 if true or success, 0 if false, -1 if failed.


Example:


set_time_limit(15);
· Explanation: set_time_limit sets the game time limit to 15 minutes.

· set_timer
Definition:

Sets a timer that goes off in a certain number of seconds.  Setting too many timers can cause them not to fire.

Syntax:

int set_timer( string timer_id, int seconds);
Parameters:
1. timer_id – timer ID string

2. seconds – time in seconds

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

set_timer(“attack”, 300);
· Explanation: set_timer sets the timer ‘attack’ to expire in 300 seconds.

· stop_timer
Definition:

Stops a timer from expiring.

Syntax:

int stop_timer( string timer_id);
Parameters:

1.   timer_id – timer ID string

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

stop_timer(“attack”);
· Explanation: stop_timer stops the timer ‘attack’ from expiring.

· timer_expired
Definition:

Finds if a timer has expired.

Syntax:

int timer_expired( string timer_id);
Parameters:

1.   timer_id – timer ID string

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

timer_expired(“attack”);
· Explanation: timer_expired finds if the timer ‘attack’ has expired.

back to index
Types Controls

· disable_tech
Definition:

Disables a technology from being researched for a nation.

Syntax:

int disable_tech( int who, string tech);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. tech – a technology type name

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

disable_tech(3, “Written Word”);
· Explanation: disable_tech disables the technology Written Word for nation 3.

· disable_type
Definition:

Disables a type from being used.

Syntax:

int disable_type( string type);
Parameters:
1. type – a game type name

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

disable_type(“Stable”);
· Explanation: disable_type disables the Stable from being created.

· enable_tech – works the same as disable_tech (above), except it enables a technology to be researched by a nation.

· enable_type – works the same as disable_type (above), except it enables a type to be used.

· find_counter_unit
Definition:

Finds the counter unit to a unit type.

Syntax:

string find_counter_unit( int who, string unit_type);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. unit_type – a unit type name

Returns:

A unit type name if true or success, a blank string or 0 if false or failed.

Example:

counter = find_counter_unit(3, “Hoplites”);
· Explanation: find_counter_unit finds the counter unit to nation 3’s Hoplites and sets counter equal to it.

· find_current_upgrade
Definition:

Finds out how far a player has researched a unit line.

Syntax:

string find_current_upgrade( int who, string unit_type);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. unit_type – a unit type name

Returns:

A unit type name if true or success, a blank string or 0 if false or failed.

Example:

heavy_inf = find_current_upgrade(8, “Hoplites”);
· Explanation: find_current_upgrade finds the current upgrade of nation 8’s Hoplite line and sets heavy_inf equal to it.

· set_type_build_time
Definition:

Sets the build time of a game type.

Syntax:

int set_type_build_time( string type, int seconds_to_build);
Parameters:
1. type – a game type name

2. seconds_to_build – time in seconds to build type

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

set_type_build_time(“Flamethrower”, 100);
· Explanation: set_type_build_time sets the build time of Flamethrowers to 100 seconds.

· type_build_time
Definition:

Finds the build time of a game type.

Syntax:

int type_build_time( string type);
Parameters:

1.   type – a game type name

Returns:

The number of seconds to build if true or success, 0 if false, -1 if failed.

Example:

hoplites_build_time = type_build_time(“Hoplites”);
· Exploration: type_build_time finds the build time of Hoplites and sets hoplites_build_time equal to that number.

back to index
UI, Highlight

· bubble_text_hide
Definition:
Hides bubble text (the giant text that pops out from buildings and units, such as “Build Caravans to generate gold”).

Syntax:

int bubble_text_hide();
Parameters:


None


Returns:


1 if true or success, 0 if false, -1 if failed.


Example:


bubble_text_hide();
· bubble_text_show – works the same as bubble_text_hide (above), except it shows bubble text (the giant text that pops out from buildings and units, such as “Build Caravans to generate gold”).

· clear_highlight
Definition:

Clears the option highlight.

Syntax:

int clear_highlight();
Parameters:

None

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

clear_highlight();
· highlight_build_option
Definition:
Highlights the build menu button and a specific user interface option button.

Syntax:

int highlight_build_option( string option);
Parameters:

1.   option – a user interface option name

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

highlight_build_option(“Farm”);
· Explanation: highlight_build_option highlights the build menu button and the farm button.

· highlight_option
Definition:
Highlights an option in the game a specific user interface option button.

Syntax:

int highlight_option( string option);
Parameters:

1.   option – a user interface option name

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

highlight_option(“Rally Point”);
· Explanation: highlight_option highlights the Rally Point option.

· highlight_tech_option
Definition:
Highlights a technology in the Library.

Syntax:

int highlight_tech_option( string option);
Parameters:

1.   option – a user interface option name

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

highlight_tech_option(“Barter”);
· Explanation: highlight_tech_option highlights the Barter technology in the Library.

· highlight_train_option
Definition:
Highlights a train unit button.

Syntax:

int highlight_train_option( string option);
Parameters:

1.   option – a user interface option name

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

highlight_train_option(“Knight”);
· Explanation: highlight_train_option highlights the Knight train button.
· is_right_click_action
Definition:

Finds if preferences are set to right click action.

Syntax:

int is_right_click_action();
Parameters:

None

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

is_right_click_action();
· ui_hide
Definition:

Hides the user interface.

Syntax:

int ui_hide();
Parameters:

None

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

ui_hide();
· ui_hide_score
Definition:

Hides the score display.

Syntax:

int ui_hide_score();
Parameters:

None

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

ui_hide_score();
· ui_show – works the same as ui_hide (above), except it shows the user interface.

· ui_show_score – works the same as ui_hide_score (above), except it shows the score display.
UI, Stats

· build_menu_active

Definition:

Finds if the citizen build menu is open.

Syntax:

int build_menu_active();
Parameters:

None

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

build_menu_active();
· build_military_menu_active – works the same as build_menu_active (above), except it finds if the build military menu is open.

· build_option_active

Definition:

Finds if the specified citizen build menu option is selected.

Syntax:

int build_option_active( string build_type);
Parameters:

1.   build_type – a building type name

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

build_option_active(“Woodcutter’s Camp”);
· Explanation: build_option_active finds if the build Woodcutter’s Camp citizen build menu option is selected.

· build_wonder_menu_active – works the same as build_menu_active (above), except it finds if the build wonder menu is open.

· is_airstrike_selected
Definition:

Finds if air strike is selected.

Syntax:

int is_airstrike_selected();
Parameters:

None

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

is_airstrike_selected();
Similar Functions: (click on to go)


is_move_selected, is_patrol_selected, is_rally_selected
· is_move_selected – works the same as is_airstrike_selected (above), except it finds if move is selected.

· is_on_selected
Definition:

Finds if a specific game world location is on screen.

Syntax:

int is_on_selected( int x, int y);
Parameters:

1.   x – game world X position


2.   y – game world Y position

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

is_on_selected(33, 189);
· Explanation: is_on_selected finds if game world location 33, 189 is on screen.

· is_patrol_selected – works the same as is_airstrike_selected (More), except it finds if patrol is selected.

· is_rally_selected – works the same as is_airstrike_selected (More), except it finds if rally is selected.

· is_zoomed_in
Definition:

Finds if player is zoomed in all the way.

Syntax:

int is_zoomed_in();
Parameters:

None

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

is_zoomed_in();
· is_zoomed_out – works the same as is_zoomed_in (above), except it finds if a player is zoomed out all the way.

Unit Info

· find_num_idle_unit
Definition:

Finds the number of idle of units a player has of a certain type.

Syntax:

int find_num_idle_unit( int who, string unit_type);
Parameters:

1.   ( who – a nation index 1-8, based on nation color


2.   unit_type – a unit type name

Returns:

The number of idle units of a type if true or success, 0 if false, -1 if failed.

Example:

idle_units = find_num_idle_unit(8, “Citizen”);
· Explanation: find_num_idle_unit finds how many idle Citizens nation 8 has and sets idle_units equal to that number.

· garrisoned_in
Definition:

Finds out the building ID of the building a unit is garrisoned in.

Syntax:

int garrisoned_in( int who, int object_o);
Parameters:

1.   ( who – a nation index 1-8, based on nation color


2.   object_o – a building or unit ID

Returns:

A building ID if true or success, 0 if false, -1 if failed.

Example:

where_in = garrisoned_in(3, 15);
· Explanation: garrisoned_in finds the building ID of the building that nation 3’s unit with the ID of 15 is garrisoned in and sets where_in equal to that building ID.

· home_base
Definition:

Finds the home base of a unit (works for airplanes and missiles).

Syntax:

int home_base( int who, int object_o);
Parameters:

1.   ( who – a nation index 1-8, based on nation color


2.   object_o – a building or unit ID

Returns:

A building ID if true or success, 0 if false, -1 if failed.

Example:

home = home_base(5, 32);
· Explanation: home_base finds the building ID of the home base of player 5’s unit with the ID of 32 and set home equal to the building ID.

· is_garrisoned

Definition:

Finds if a unit is garrisoned.

Syntax:

int is_garrisoned( int who, int object_o);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. object_o – a building or unit ID

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

is_garrisoned(3, 10);
· Explanation: is_garrisoned finds if nation 3’s unit with an ID of 10 is garrisoned.

· is_merchant_unpacked – works like is_garrisoned (above), except it finds if a merchant is unpacked.

· is_on_transport – works like is_garrisoned (above), except it finds if a unit is on a transport.

· max_caravan_routes
Definition:

Finds the maximum number of caravan routes a player can have.

Syntax:

int max_caravan_routes( int who);
Parameters:

1.   ( who – a nation index 1-8, based on nation color

Returns:
The maximum number of caravan routes a player can have if true or success, 0 if false, -1 if failed.

Example:

max_trade = max_caravan_routes(3);

Finds the maximum number of caravan routes nation 3 can have and sets max_trade equal to that number.

· num_caravan_routes – works like max_caravan_routes (above), only it finds the total number of current caravan routes.

· unit_category
Definition:
Finds the unit category a unit belongs to.

Syntax:

string unit_category( int who, int object_o);
Parameters:

1.   ( who – a nation index 1-8, based on nation color


2.   object_o – a building or unit ID

Returns:
( A unit category name if true or success, 0 if false, -1 if failed.

Example:

unit_category(4, 34);
· Explanation: unit_category finds the unit category that nation 4’s unit with an ID of 34 belongs to.

· unit_group_near
Definition:
Finds if a player has a certain amount of units from the current group near a specific location.


Syntax:


int unit_group_near( int who, int num_units, int x, int y, int dist_radius);

Parameters:
1. ( who – a nation index 1-8, based on nation color

2. num_units – an integer value

3. x – game world X location

4. y – game world Y location

5. dist_radius – game world distance radius (in tile units)

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

unit_group_near(6, 3, 25, 93, 15);
· Explanation: unit_group_near finds if nation 6 has 3 units from the current group within 15 tiles of game world location 25, 93.

· unit_group_near_build
Definition:
Finds if a player has a certain amount of units from the current group near a specific building.


Syntax:
int unit_group_near_build( int who, int num_units, int who_build, int build_o, int dist_radius);

Parameters:
1. ( who – a nation index 1-8, based on nation color

2. num_units – an integer value

3. ( who_build – a nation index 1-8, based on nation color

4. build_o – a building ID

5. dist_radius – game world distance radius (in tile units)

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

unit_group_near_build(6, 3, 3, 2033, 15);
· Explanation: unit_group_near_build finds if nation 6 has 3 units from the current group within 15 tiles of nation 3’s building with the ID of 2033.

· unit_killed
Definition:

Finds if a specific unit has been killed.

Syntax:

int unit_killed( int who, int unit_o);
Parameters:

1.   ( who – a nation index 1-8, based on nation color


2.   unit_o – a unit ID

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

unit_killed(3, 43);
· Explanation: unit_killed finds if nation 3’s unit with the ID of 43 has been killed.

· unit_type_killed
Definition:

Finds if a specific unit type has been killed.

Syntax:

int unit_type_killed( int who, string unit_type);
Parameters:

1.   ( who – a nation index 1-8, based on nation color


2.   unit_type – a unit type name

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

unit_type_killed(3, “Knight”);
· Explanation: unit_type_killed finds if nation 3 has had any Knights killed.

back to index
Unit Orders

· add_to_group
Definition:

Adds an object to the current group.

Syntax:

int add_to_group( int who, int object_o);
Parameters:

1.   ( who – a nation index 1-8, based on nation color


2.   object_o – a unit ID

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

add_to_group(3, 54);
· Explanation: add_to_group adds nation 3’s unit with the ID of 54 to nation 3’s current group.

Similar Functions: (click on to go)


remove_from_group
· air_base_recall_order
Definition:

Recalls a plane back to its airbase.

Syntax:

int air_base_recall_order( int who, int unit_o);
Parameters:

1.   ( who – a nation index 1-8, based on nation color


2.   unit_o – a unit ID

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

air_base_recall_order(3, 53);
· Explanation: air_base_recall_order recalls back nation 3’s plane with the ID of 53 to its base.

· air_unit_return_order – works the same as air_base_recall_order (above), except it returns a plane to its airbase.

· air_unit_transfer_order
Definition:

Returns a plane back to its airbase.

Syntax:

int air_unit_transfer_order( int who, int unit_o, int object_o_target);
Parameters:

1.   ( who – a nation index 1-8, based on nation color


2.   unit_o – a unit ID


3.   object_o_target – a building or unit ID

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

air_unit_transfer_order(3, 53, 2033);
· Explanation: air_unit_transfer_order transfers nation 3’s plane with the ID of 53 to the airbase with the building ID of 2033.


· citizen_repair_order
Definition:

Gives a citizen an order to repair a building.

Syntax:

int citizen_repair_order( int who, int unit_o, int build_o_target);
Parameters:

1.   ( who – a nation index 1-8, based on nation color


2.   unit_o – a unit ID


3.   build_o_target – a building ID


Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

citizen_repair_order(2, 33, 2100);
· Explanation: citizen_repair_order tells nation 2’s citizen with the unit ID of 33 to repair the building with the ID of 2100.

· clear_group
Definition:

Clears the current group.

Syntax:

int clear_group( int who);
Parameters:

1.   ( who – a nation index 1-8, based on nation color

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

clear_group(3);
· Explanation: clear_group clears the current group of nation 3.


· craft_percent
Definition:

Finds how much percentage craft a unit has left.

Syntax:

int craft_percent( int who, int unit_o);
Parameters:

1.   ( who – a nation index 1-8, based on nation color


2.   unit_o – a unit ID

Returns:

The craft percent (0-100) if true or success, 0 if false, -1 if failed.

Example:

craft_left = craft_percent(3, 25);
· Explanation: craft_percent finds the craft percent left that nation 3’s unit with the ID of 25 has, and sets craft_left equal to that value.

· find_target_id
Definition:

Finds the ID of the object that is being targeted.

Syntax:

int find_target_id( int who, int unit_o);
Parameters:

1.   ( who – a nation index 1-8, based on nation color


2.   unit_o – a unit ID

Returns:

The targeted objects ID if true or success, 0 if false, -1 if failed.

Example:

target_id = find_target_id(8, 38);
· Explanation: find_target_id finds out the ID of the object that nation 8’s unit with the ID of 38 is targeting and sets target_id equal to that value.

· find_target_who
Definition:

Finds the who (player number, team) of the object that is being targeted.

Syntax:

int find_target_who( int who, int unit_o);
Parameters:

1.   ( who – a nation index 1-8, based on nation color


2.   unit_o – a unit ID

Returns:
The targeted objects team/player number if true or success, 0 if false, -1 if failed.

Example:

target_who = find_target_who(8, 38);
· Explanation: find_target_who finds out the who of the object that nation 8’s unit with the ID of 38 is targeting and sets target_who equal to that value.

· general_ambush
Definition:

Makes a general use his ambush ability.

Syntax:

int general_ambush( int who, int unit_o);
Parameters:

1.   ( who – a nation index 1-8, based on nation color


2.   unit_o – a unit ID

Returns:

1 if true or success, 0 if failed, -1 if false.

Example:

general_ambush(4, 83);
· Explanation: general_ambush makes nation 4’s general with the unit ID of 83 use his ambush ability.

· general_decoy
Definition:

Makes a general use his decoy ability.

Syntax:

int general_decoy( int who, int unit_o, int who_target, int unit_o_target);
Parameters:

1.   ( who – a nation index 1-8, based on nation color


2.   unit_o – a unit ID

3. ( who_target – a nation index 1-8, based on nation color

4. unit_o_target – a unit ID

Returns:

1 if true or success, 0 if failed, -1 if false.

Example:

general_decoy(4, 83, 4, 38);
· Explanation: general_decoy makes nation 4’s general with the unit ID of 83 use his decoy ability on nation 4’s unit with the ID of 38.

· general_entrench – works the same as general_ambush (above), except it makes a general use his entrench ability.

· general_forced_march – works the same as general_ambush (above), except it makes a general use his forced march ability.

· general_is_ambushing
Definition:

Finds if a general is using his ambush ability.

Syntax:

int general_is_ambushing( int who, int unit_o);
Parameters:

1.   ( who – a nation index 1-8, based on nation color


2.   unit_o – a unit ID

Returns:

1 if true or success, 0 if failed, -1 if false.

Example:

general_is_ambushing(4, 83);
· Explanation: general_is_ambushing finds if nation 4’s general with the unit ID of 83 is using his ambush ability.

· general_is_forced_marching – works the same as general_is_ambushing (above), except it finds if a general is using his forced march ability. 

· get_repeat_orders
Definition:

Finds if planes have repeat orders turned on.

Syntax:

int get_repeat_orders( int who, int unit_o);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. unit_o – a unit ID

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

get_repeat_orders(4, 38);
· Explanation: get_repeat_orders finds if nation 4’s plane with the unit ID of 38 has repeat orders turned on.

· get_spell_name
Definition:

Finds the name of the spell a unit is using.

Syntax:

string get_spell_name( int who, int unit_o);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. unit_o – a unit ID

Returns:

The spell name if true or success, a blank string or 0 if false or failed.

Example:

get_spell_name(4, 38);
· Explanation: get_spell_name finds the name of the spell that nation 4’s unit with the ID of 38 is using.

· group_attack_order
Definition:

Orders the current group to attack an object.  Object must be visible to nation.

Syntax:

int group_attack_order(int who, int who_attacked, int object_o);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. ( who_attacked – a nation index 1-8, based on nation color (who’s object to attack)

3. object_o – a building or unit ID (the object to attack)

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

group_attack_order(2, 3, 2033);
· Explanation: group_attack_order tells nation 2’s current group to attack nation 3’s building with the ID of 2033.


· group_attack_to_order
Definition:

Orders the current group to attack to a location.

Syntax:

int group_attack_to_order( int who, int x, int y);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. x – game world X position

3. y – game world Y position

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

group_attack_to_order(2, 120, 200);
· Explanation: group_attack_to_order tells nation 2’s current group to attack to game world location 120, 200.

Similar Functions: (click on to go)


group_explore_order, group_move_order, group_patrol_order
· group_explore_order – works the same as group_attack_to_order (above), except it orders the current group to explore to a location.
· group_guard_order
Definition:

Orders the current group to guard an object.

Syntax:

int group_guard_order( int who, int who_guard, int object_o_guard);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. ( who_guard – a nation index 1-8, based on nation color (whose object to guard)

3. object_o_guard – a building or unit ID (what object to guard)

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

group_guard_order(2, 2, 100);
· Explanation: group_guard_order tells nation 2’s current group to guard nation 2’s unit with the ID of 100.

· group_move_order – works the same as group_attack_to_order (More), except it orders the current group to move to a location.
· group_patrol_order – works the same as group_attack_to_order (More), except it orders the current group to patrol to a location.
· group_stance_order
Definition:
Orders the current group to change stance.  Stances: Aggressive, Defensive, Raid and Stand Ground for military units;  Build, Build and Gather,  Gather and Stand for citizens.

Syntax:

int group_stance_order( int who, string stance);
Parameters:
1.   ( who – a nation index 1-8, based on nation color

2.   stance – a stance name

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

group_stance_order(2, “Raid”);
· Explanation: group_stance_order tells nation 2’s current group to change stance to Raid.

· group_waypoint_order
Definition:

Adds a waypoint to the current groups queue.

Syntax:

int group_waypoint_order( int who, int x, int y);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. x – game world X position

3. y – game world Y position

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

group_waypoint_order(5, 87, 201);
· Explanation: group_waypoint_order adds the waypoint of game world position 87, 201 to nation 5’s current group’s waypoint queue.


· has_attack_order
Definition:

Finds if a unit has an attack order.

Syntax:

int has_attack_order( int who, int unit_o);
Parameters:

1.   ( who – a nation index 1-8, based on nation color


2.   unit_o – a unit ID

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

has_attack_order(3, 83);
· Explanation: has_attack_order finds if nation 3’s unit with the ID of 83 has an attack order.

Similar Functions: (click on to go)

has_build_order, has_cast_order, has_follow_order, has_gather_order, has_move_order, has_patrol_order, has_repair_order, has_target_order
· has_build_order – works the same as has_attack_order (above), except it finds if a unit has a build order.

· has_cast_order – works the same as has_attack_order (More), except it finds if a unit has a cast order.

· has_follow_order – works the same as has_attack_order (More), except it finds if a unit has a follow order.

· has_gather_order – works the same as has_attack_order (More), except it finds if a unit has a gather order.

· has_move_order – works the same as has_attack_order (More), except it finds if a unit has a move order.

· has_patrol_order – works the same as has_attack_order (More), except it finds if a unit has a patrol order.

· has_repair_order – works the same as has_attack_order (More), except it finds if a unit has a repair order.

· has_target_order – works the same as has_attack_order (More), except it finds if a unit has a target order.
· is_decoy
Definition:

Finds if a unit is a decoy.

Syntax:

int is_decoy( int who, int unit_o);
Parameters:

1.   ( who – a nation index 1-8, based on nation color


2.   unit_o – a unit ID

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

is_decoy(3, 30);
· Explanation: is_decoy finds if nation 3’s unit with the ID of 30 is a decoy.

Similar Functions: (click on to go)


is_entrenched, is_gathering, is_idle, is_in_group
· is_entrenched – works the same as is_decoy (above), except it finds if a unit is entrenched.

· is_gathering – works the same as is_decoy (More), except it finds if a unit is gathering.

· is_idle – works the same as is_decoy (More), except it finds if a unit is idle.

· is_in_group – works the same as is_decoy (More), except it finds if a unit is in the current group.

· is_infiltrated
Definition:

Finds if a unit is in the current group.

Syntax:

int is_infiltrated( int who, int object_o);
Parameters:

1.   ( who – a nation index 1-8, based on nation color


2.   object_o – a building or unit ID

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

is_infiltrated(3, 30);
· Explanation: is_infiltrated finds if nation 3’s object with the ID of 30 is infiltrated.

· remove_from_group – works the same as add_to_group (More), except it removes a unit from the current group.

· repeat_orders_disable
Definition:

Disables repeat orders at an airbase.

Syntax:

int repeat_orders_disable( int who, int object_o);
Parameters:

1.   ( who – a nation index 1-8, based on nation color


2.   object_o – a building or unit ID

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

repeat_orders_disable(1, 2003);
· Explanation: repeat_orders_disable disables repeat orders at nation 1’s airbase with the building ID of 2003.

· repeat_orders_enable – works the same as repeat_orders_disable (above), except it enables repeat orders at an airbase.
· special_forces_sabotage
Definition:

Orders a special forces unit to sabotage a building or vehicle.

Syntax:
int special_forces_sabotage( int who, int unit_o, int who_target, int object_o_target);

Parameters:
1. ( who – a nation index 1-8, based on nation color

2. unit_o – a unit ID

3. ( who_target – a nation index 1-8, based on nation color (what nation to target)

4. object_o – a building or unit ID (what object to target)

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

special_forces_sabotage(3, 38, 8, 2003);
· Explanation: special_forces_sabotage orders nation 3’s special forces unit with the unit ID of 38 to sabotage nation 8’s object with the ID of 2003.

· spy_bribe
Definition:

Orders a spy to bribe a unit.

Syntax:

int spy_bribe( int who, int unit_o, int who_target, int unit_o_target);
Parameters:

1.   ( who – a nation index 1-8, based on nation color


2.   unit_o – a unit ID


3.   ( who_target – a nation index 1-8, based on nation color (whose unit to bribe)


4.   unit_o_target – a unit ID (what unit to bribe)

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

spy_bribe(3, 39, 2, 30);
· Explanation: spy_bribe orders nation 3’s spy with the unit ID of 39 to bribe nation 2’s unit with the ID of 30.

· unit_attack_ground_order – works the same as unit_attack_to_order (More), except it orders a unit to attack a game world position. 

· unit_attack_order
Definition:

Orders a unit to attack an object.  The object must be visible.


Syntax:
int unit_attack_order( int who_attacker, int unit_o, int who_attacked, int object_o);

Parameters:


1.   ( who_attacker – a nation index 1-8, based on nation color (whose unit does the attacking)



2.   unit_o – a unit ID (what unit does the attacking)



3.   ( who_attacked – a nation index 1-8, based on nation color (whose object to attack)



4.   object_o– a building or unit ID (what object to attack)


Returns:


1 if true or success, 0 if false, -1 if failed.


Example:


unit_attack_order(1, 38, 8, 2043);
· Explanation: unit_attack_order orders nation 1’s unit with the ID of 38 to attack nation 8’s object with the ID of 2043

· unit_attack_to_order
Definition:

Orders a unit to attack to a game world location. 


Syntax:


int unit_attack_to_order( int who, int unit_o, int x, int y);

Parameters:


1.   ( who – a nation index 1-8, based on nation color



2.   unit_o – a unit ID



3.   x – game world X position



4.   y – game world Y position


Returns:


1 if true or success, 0 if false, -1 if failed.


Example:


unit_attack_to_order(1, 38, 103, 139);
· Explanation: unit_attack_to_order orders nation 1’s unit with the ID of 38 to attack to game world location 103, 139.


Similar Functions: (click on to go)



unit_attack_ground_order, unit_explore_order, unit_flee_order, unit_move_order, unit_patrol_order
· unit_clear_orders
Definition:

Clears a unit’s orders.


Syntax:


int unit_clear_orders( int who, int unit_o);

Parameters:


1.   ( who – a nation index 1-8, based on nation color



2.   unit_o – a unit ID


Returns:


1 if true or success, 0 if false, -1 if failed.


Example:


unit_clear_orders(1, 38);
· Explanation: unit_clear_orders clears the orders of nation 1’s unit with the ID of 38.

· unit_explore_order – works the same as unit_attack_to_order (More), except it orders a unit to explore to a game world position.

· unit_flee_order – works the same as unit_attack_to_order (More

), except it orders a unit to flee to a game world position.

· unit_move_order – works the same as unit_attack_to_order (More

), except it orders a unit to move to a game world position.

· unit_patrol_order – works the same as unit_attack_to_order (More

), except it orders a unit to patrol to a game world position.

· unit_stance_order
Definition:
Orders a unit to change stance.  Stances: Aggressive, Defensive, Raid and Stand Ground for military units;  Build, Build and Gather,  Gather and Stand for citizens.

Syntax:

int unit_stance_order( int who, int unit_o, string stance);
Parameters:
1.   ( who – a nation index 1-8, based on nation color

2.   unit_o – a unit ID

3.   stance – a stance name

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

unit_stance_order(2, 25, “Raid”);
· Explanation: unit_stance_order tells nation 2’s unit with the ID of 25 to change stance its to Raid.

· unit_stop_effect
Definition:

Stops an effect a unit is doing.

Syntax:

int unit_stop_effect( int who, int unit_o);
Parameters:

1.   ( who – a nation index 1-8, based on nation color


2.   unit_o – a unit ID

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

unit_stop_effect(3, 48);
· Explanation: unit_stop_effect stops an effect that nation 3’s unit with the ID of 48 is doing.

· unit_waypoint_order
Definition:

Adds a waypoint to a unit’s queue.

Syntax:

int unit_waypoint_order( int who, int unit_o, int x, int y);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. unit_o – a unit ID

3. x – game world X position

4. y – game world Y position

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

unit_waypoint_order(5, 25, 87, 201);
· Explanation: unit_waypoint_order adds the waypoint of game world position 87, 201 to nation 5’s unit with the ID of 25’s waypoint queue.

back to index
Unit Training

· train_unit
Definition:

Queues up a unit at an available building that trains that unit type.

Syntax:

int train_unit( int who, int num, string unit_type);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. num – an integer value

3. unit_type – a unit type name

Returns:
The building ID that the units are trained at if true or success, 0 if false, -1 if failed.


Example:


train_unit(1, 5, “Hoplites”);
· Example: train_unit queues up 5 Hoplites for nation 1 at an available Barracks.

· train_unit_at
Definition:

Queues up a unit at a certain building that trains that unit type.

Syntax:

int train_unit_at( int who, int num, string unit_type, int build_o);
Parameters:
1. ( who – a nation index 1-8, based on nation color

2. num – an integer value

3. unit_type – a unit type name

4. build_o – a building ID

Returns:
The building ID that the units are trained at if true or success, 0 if false, -1 if failed.


Example:


train_unit_at(2, 3, “Scout”, 2053);
· Example: train_unit_at queues up 3 Scouts for nation 2 at the Barracks with the ID of 2053.

· train_unit_at_with_cost – works like train_unit_at (above), except the AI only queues up a unit at a certain building that trains that unit type if it has the resources to pay for it.

· train_unit_with_cost – works like train_unit (above), except the AI only queues up a unit once it has the resources to pay for it.

back to index
Victory/Defeat

· defeat
Definition:

Defeats a player.

Syntax:

int defeat( int who);
Parameters:

1.   ( who – a nation index 1-8, based on nation color

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

defeat(2);
· Explanation: defeat defeats nation 2.

· set_defeat_message
Definition:

Sets the message a player gets when defeated.

Syntax:

int set_defeat_message( string message_defeat);
Parameters:

1.   message_defeat – text to be displayed

Returns:

1 if true or success, 0 if false, -1 if failed.

Example:

set_defeat_message(“You have lost disgracefully”);
· Explanation: set_defeat_message changes the defeat message a player receives upon defeat to “You have lost disgracefully.”

· set_victory_message – works like set_defeat_message (above), except it sets the message a player gets when victorious.

· victory – works like defeat (above), except it makes a player victorious.

back to index
Triggers

(See appendix for detailed explanation of triggers)

· disable_all_triggers
Definition:

Disables all triggers in the script.

Syntax:

void disable_all_triggers();
Parameters:

None

Returns:

Nothing (0 if used in an expression).

Example:

disable_all_triggers();
· enable_all_triggers – works like disable_all_triggers (above), except it enables all triggers in the script.

· is_trigger_enabled
Definition:

Checks to see if a certain trigger is enabled.

Syntax:

int is_trigger_enabled( string trigger);
Parameters:

1.   trigger – a trigger name

Returns:


1 if true or success, 0 if false, -1 if failed.

Example:

is_trigger_enabled(“say_hi”);
· Explanation: is_trigger_enabled checks to see if the trigger “say_hi” is enabled.

back to index
Utilities, Math

· absl_float
· absl_int
Definition:

Takes the absolute value of an integer or a floating point value, respectively
Syntax:

real absl_float( real real_value);

int absl_float( int num_value);
Parameters:
1. num_value – an integer OR
real_value – a real number

Returns:

The absolute value of the integer or floating point value if true or success.  –1 if failed.

Example:

absl_int(-1);
· Explanation: absl_int finds the absolute value of –1.

· rand_int
Definition:

Picks a random integer between two integer values.

Syntax:

int rand_int( int num_min, int num_max);
Parameters:

1.   num_min – an integer value


2.   num_max – an integer value

Returns:

An integer between num_min and num_max if true or success, -1 if failed.

Example:

rand = rand_int(38, 59);
· Explanation: rand_int finds a random integer between 38 and 59 and sets rand equal to it.

· rand_real
Definition:

Picks a random floating point value between 0 and 1

Syntax:

real rand_real();
Parameters:

None

Returns:

A floating point value between 0 and 1

Example:

rand = rand_real();
· Explanation: rand_real gets some random number between 0 and 1 and sets rand to it.

· acos
· asin
· atan
· cos
· sin
· tan
· sqrt
Definition:

Evaluates the math/trig operation

Syntax:

real acos( real real_num);

real asin( real real_num);

real atan( real real_num);

real cos( real real_num);

real sin( real real_num);

real tan( real real_num);

real sqrt( real real_num);
Parameters:

None

Returns:

A floating point value between 0 and 1

Example:

 value = sqrt(some_number);

 value = cos(some_number);
· Explanation: sqrt finds the square root of some_number and sets value to it.

· Explanation: cos finds the cosine of some_number and sets value to it.

· min_val
· max_val
Definition:

Returns the minimum or maximum of two numbers, respectively

Syntax:

real min_val ( real real_num1, real_num2);
real max_val ( real real_num1, real_num2);
Parameters:

1. real_num1 – a real number

2. real_num2 – a real number

Example:

 smallest = min_val(a, b);

 largest = max_val(a, b);
· Explanation:  if a < b, min_val assigns a to smallest, otherwise b to smallest
· Explanation:  if a < b, max_val assigns b to largest, otherwise a to largest
back to index
(Some functions are not listed. For a complete listing, select Edit -> Insert Trigger Function… from the Script Editor menubar)

Appendix


Here is some brief over of some essential language concepts that are frequently used in conjunction with the above functions. For more extensive documentation on the scripting language itself, see the Scripting Language Reference Manual.
if Statements
The most important thing to know is about if and else statements.  It is using these that functions can be evaluated.  For example, if you want to find if a function is true (it returns a 1) and then have it do something if it is, then you would write something like this:


if (function_name(variable)) {

  do_this;

}
else Statements
Also important is the else statement.  This is used to give an alternate condition to the if statement, in case it is not true.  For example, in this function if the function function_name is true, than the command do_this is done, if not than do_that is done:


if (function_name(variable)) {

  do_this;

}

else {

  do_that;

}
for Statements

Finallly, there is the for statement.  This is used if you want to cycle through something a bunch of times.  For example, to find all the citizens in a nation and give them an order to move, you would do this:


for (n = num_citizens(5); n > 0; n--) {

  citizen =  find_unit(5, “Citizen”);

  unit_move_order(5, citizen);

}
back to index
Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Zoom Level

4 – far out

5 – medium

6 – close in



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



City Levels

1 = Small

2 = Large

3 = Major



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Age Numbers

1 = Ancient

2 = Classical

3 = Medieval

4 = Gunpowder

5 = Enlightenment

6 = Industrial

7 = Modern

8 = Information



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Resource Types

Food

Timber

Metal

Oil�Wealth

Knowledge



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Unit Categories

Foot	

Mounted

Mech

Artillery

Command

Civilian

Sail (boats w/ sails)

Naval (no sails)

Air



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Animation IDs

1 = no animation	

2 = stabbed

3 = shot

4 = exploded





Animation IDs

1 = no animation	

2 = stabbed

3 = shot

4 = exploded





Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Resource Types

Food

Timber

Metal

Oil�Wealth

Knowledge



Resource Types

Food

Timber

Metal

Oil�Wealth

Knowledge



Resource Types

Food

Timber

Metal

Oil�Wealth

Knowledge



Resource Types

Food

Timber

Metal

Oil�Wealth

Knowledge



Difficulties

1 = Easiest

2 = Easy

3 = Moderate

4 = Tough

5 = Tougher

6 = Toughest



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Rush Rules

0 = Standard

1 = Peace until Classical

2 = Peace until Medieval

3 = Peace until Gunpowder

4 = Peace until Enlightenment

5 = Peace until Industrial

6 = Peace until Modern

7 = Peace until Information

8 = Non violent

9 = Peace for first 2 minutes

10 = Peace for first 5 minutes

11 = Peace for first 10 minutes

12 = peace for first 15 minutes

13 = Peace for first 20 minutes

14 = Peace for first 30 minutes

 



Difficulties

1 = Easiest

2 = Easy

3 = Moderate

4 = Tough

5 = Tougher

6 = Toughest



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Tilesets

african_savannah

arctic

dirty

GS_Desert

jungle

m_steppe

snowy

SW_desert



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Resource Types

Food

Timber

Metal�Oil

Wealth

Knowledge



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Resource Types

Food

Timber

Metal�Oil

Wealth

Knowledge



Resource Types

Food

Timber

Metal�Oil

Wealth

Knowledge



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Resource Types

Food

Timber

Metal�Oil

Wealth

Knowledge



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Ages

1 = Ancient

2 = Classical

3 = Medieval

4 = Gunpowder

5 = Enlightenment

6 = Industrial

7 = Modern

8 = Information



Resource Types

Food

Timber

Metal

Oil

Wealth

Knowledge



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Starting Resources

0 = Low		 7 = Deathmatch

1 = Standard	 8 = Infinite

2 = x2		 9 = Variable Low

3 = x3		10 = Variable Medium

4 = x5`		11 = Variable High

5 = x10		12 = Random

6 = x20



Starting City Sizes

0 = Nomad

1 = Small City only

2 = Standard

3 = Large City



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Unit Categories

Foot	

Mounted

Mech

Artillery

Command

Civilian

Sail (boats w/ sails)

Naval (no sails)

Air



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Unit Categories

Foot	

Mounted

Mech

Artillery

Command

Civilian

Sail (boats w/ sails)

Naval (no sails)

Air



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange





Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange





Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Ages

1 = Ancient	

2 = Classical

3 = Medieval

4 = Gunpowder

5 = Enlightenment

6 = Industrial

7 = Modern

8 = Information



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Unit Categories

Foot	

Mounted

Mech

Artillery

Command

Civilian

Sail (boats w/ sails)

Naval (no sails)

Air



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange





Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange



Nation Index

1 = red	

2 = blue	

3 = purple

4 = green

5 = yellow

6 = light blue

7 = gray

8 = orange







